留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尺度适应性起沙机制在CMA-CUACE/Dust中的应用

周春红 饶晓琴 盛黎 张健 陆建燕 林建 胡江凯 张碧辉 徐冉

周春红, 饶晓琴, 盛黎, 等. 尺度适应性起沙机制在CMA-CUACE/Dust中的应用. 应用气象学报, 2024, 35(4): 400-413. DOI:  10.11898/1001-7313.20240402..
引用本文: 周春红, 饶晓琴, 盛黎, 等. 尺度适应性起沙机制在CMA-CUACE/Dust中的应用. 应用气象学报, 2024, 35(4): 400-413. DOI:  10.11898/1001-7313.20240402.
Zhou Chunhong, Rao Xiaoqin, Sheng Li, et al. Application of scale-adaptive dust emission scheme to CMA-CUACE/Dust. J Appl Meteor Sci, 2024, 35(4): 400-413. DOI:  10.11898/1001-7313.20240402.
Citation: Zhou Chunhong, Rao Xiaoqin, Sheng Li, et al. Application of scale-adaptive dust emission scheme to CMA-CUACE/Dust. J Appl Meteor Sci, 2024, 35(4): 400-413. DOI:  10.11898/1001-7313.20240402.

尺度适应性起沙机制在CMA-CUACE/Dust中的应用

DOI: 10.11898/1001-7313.20240402
资助项目: 

国家重点研发计划 2022YFC3701205

中国气象局创新发展专项 CXFZ2023P062

详细信息
    通信作者:

    周春红, 邮箱:zhouch@cma.gov.cn

Application of Scale-adaptive Dust Emission Scheme to CMA-CUACE/Dust

  • 摘要: 沙尘暴是影响我国重要的灾害性天气之一,针对中国气象局亚洲沙尘暴数值预报系统CMA-CUACE/Dust(China Meteorological Administration Unified Atmospheric Environment for Dust)的沙尘质量浓度在中亚高估、蒙古北部低估、在我国消散过快以及极端沙尘暴预报峰值偏低等问题,应用与模式格距匹配的尺度适应性起沙机制并更新风蚀资料库对模式进行改进。对2021年3月13—17日东亚最强沙尘暴个例和2023年3—5月与业务运行环境一致的连续预报试验表明,改进后的模式(CMA-CUACE/Dust V1.5)有效改善了上述不足,极端沙尘暴过程传输至我国后的沙尘质量浓度峰值与观测接近。连续预报试验TS(threat score)评分显示:CMA-CUACE/Dust V1.5预报一致性和连续性较好,1~5 d不同时效预报TS评分明显高于改进前和韩国模式ADAM(the Asian Dust Aerosol Model),漏报率明显降低,对2023年5次沙尘过程的4次预报TS评分高于0.3,部分过程超过0.5。
  • 图  1  2021年3月14日和15日14 :00 CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5地面沙尘质量浓度预报(填色)和观测(符号)

    Fig. 1  Forecasted dust concentration(the shaded) by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observation(the mark) at 1400 BT 14 Mar and 1400 BT 15 Mar in 2021

    图  1  2021年3月14日和15日14 :00 CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5地面沙尘质量浓度预报(填色)和观测(符号)

    Fig. 1  Forecasted dust concentration(the shaded) by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observation(the mark) at 1400 BT 14 Mar and 1400 BT 15 Mar in 2021

    图  2  2021年3月17日08:00 CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5地面沙尘质量浓度预报(填色)和观测(符号)

    Fig. 2  Forecasted dust concentration(the shaded) by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observation(the mark) at 0800 BT 17 Mar 2021

    图  2  2021年3月17日08:00 CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5地面沙尘质量浓度预报(填色)和观测(符号)

    Fig. 2  Forecasted dust concentration(the shaded) by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observation(the mark) at 0800 BT 17 Mar 2021

    图  3  2021年3月13日08:00—18日02:00 CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5北京和上海地面沙尘质量浓度预报和观测

    Fig. 3  Forecasted dust concentration by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observation in Beijing and Shanghai from 0800 BT 13 Mar to 0200 BT 18 Mar in 2021

    图  3  2021年3月13日08:00—18日02:00 CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5北京和上海地面沙尘质量浓度预报和观测

    Fig. 3  Forecasted dust concentration by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observation in Beijing and Shanghai from 0800 BT 13 Mar to 0200 BT 18 Mar in 2021

    图  4  2023年3—5月CMA-CUACE/Dust V1.0、CMA-CUACE/Dust V1.5和ADAM不同时效预报的TS评分、漏报率和空报率

    Fig. 4  Thread score, missing rate and false rate for CMA-CUACE/Dust V1.0, CMA-CUACE/Dust V1.5 and ADAM from Mar to May in 2023

    图  4  2023年3—5月CMA-CUACE/Dust V1.0、CMA-CUACE/Dust V1.5和ADAM不同时效预报的TS评分、漏报率和空报率

    Fig. 4  Thread score, missing rate and false rate for CMA-CUACE/Dust V1.0, CMA-CUACE/Dust V1.5 and ADAM from Mar to May in 2023

    图  5  2023年春季5次沙尘暴过程的CMA-CUACE/Dust V1.0、CMA-CUACE/Dust V1.5和ADAM预报TS评分、空报率和漏报率

    Fig. 5  Threat score, missing rate and false rate of five episodes of sand and dust storms in spring of 2023 for CMA-CUACE/Dust V1.0, CMA-CUACE/Dust V1.5 and ADAM

    图  5  2023年春季5次沙尘暴过程的CMA-CUACE/Dust V1.0、CMA-CUACE/Dust V1.5和ADAM预报TS评分、空报率和漏报率

    Fig. 5  Threat score, missing rate and false rate of five episodes of sand and dust storms in spring of 2023 for CMA-CUACE/Dust V1.0, CMA-CUACE/Dust V1.5 and ADAM

    图  6  2023年3月19—24日沙尘暴过程起沙阶段CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5PM10质量浓度预报(填色)和天气现象观测(符号)

    Fig. 6  Forecasted PM10 concentration(the shaded) in onset stage of sand and dust storm event from 19 Mar to 24 Mar in 2023 by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observed phenomena(the mark)

    图  6  2023年3月19—24日沙尘暴过程起沙阶段CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5PM10质量浓度预报(填色)和天气现象观测(符号)

    Fig. 6  Forecasted PM10 concentration(the shaded) in onset stage of sand and dust storm event from 19 Mar to 24 Mar in 2023 by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observed phenomena(the mark)

    图  7  2023年3月19—24日沙尘暴过程传输阶段CMA-CUACE/Dust V1.0、CMA-CUACE/Dust V1.5PM10质量浓度预报(填色)与天气现象观测(符号)

    Fig. 7  Forecasted PM10 concentration(the shaded) in transportation stage of sand and dust storm event from 19 Mar to 24 Mar in 2023 by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observed phenomena(the mark)

    图  7  2023年3月19—24日沙尘暴过程传输阶段CMA-CUACE/Dust V1.0、CMA-CUACE/Dust V1.5PM10质量浓度预报(填色)与天气现象观测(符号)

    Fig. 7  Forecasted PM10 concentration(the shaded) in transportation stage of sand and dust storm event from 19 Mar to 24 Mar in 2023 by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observed phenomena(the mark)

    图  8  2023年4月9—13日沙尘暴过程CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5沙尘质量浓度预报(填色)与天气现象观测(符号)

    Fig. 8  Forecasted dust concentration(the shaded) of sand and dust storm event from 9 Apr to 13 Apr in 2023 by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observed phenomena(the mark)

    图  8  2023年4月9—13日沙尘暴过程CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5沙尘质量浓度预报(填色)与天气现象观测(符号)

    Fig. 8  Forecasted dust concentration(the shaded) of sand and dust storm event from 9 Apr to 13 Apr in 2023 by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observed phenomena(the mark)

    图  9  2023年5月18—21日沙尘暴过程起沙阶段和传输阶段CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5沙尘质量浓度预报(填色)与天气现象观测(符号)

    Fig. 9  Forecasted dust concentration(the shaded) in onset and transportation stages of sand and dust event from 18 May to 21 May in 2023 by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observed phenomena(the mark)

    图  9  2023年5月18—21日沙尘暴过程起沙阶段和传输阶段CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5沙尘质量浓度预报(填色)与天气现象观测(符号)

    Fig. 9  Forecasted dust concentration(the shaded) in onset and transportation stages of sand and dust event from 18 May to 21 May in 2023 by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observed phenomena(the mark)

    表  1  CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5中MBA机制释放沙尘的三模态分布的几何平均直径(d)、几何标准差(σ)和缔结动能(e)

    Table  1  Geometric mean diameter(d), geometric standard deviation(σ) and binding energy(e) of three modes of dust released in MBA scheme in CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5

    分布参数 模态Ⅰ 模态Ⅱ 模态Ⅲ
    V1.0 V1.5 V1.0 V1.5 V1.0 V1.5
    d/μm 1.50 5.75 6.70 13.75 14.2 27.5
    σ 1.7 1.7 1.6 1.6 1.5 1.5
    e/(g·cm2·s-2) 3.61 3.61 3.52 3.52 3.42 3.42
    下载: 导出CSV

    表  1  CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5中MBA机制释放沙尘的三模态分布的几何平均直径(d)、几何标准差(σ)和缔结动能(e)

    Table  1  Geometric mean diameter(d), geometric standard deviation(σ) and binding energy(e) of three modes of dust released in MBA scheme in CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5

    分布参数 模态Ⅰ 模态Ⅱ 模态Ⅲ
    V1.0 V1.5 V1.0 V1.5 V1.0 V1.5
    d/μm 1.50 5.75 6.70 13.75 14.2 27.5
    σ 1.7 1.7 1.6 1.6 1.5 1.5
    e/(g·cm2·s-2) 3.61 3.61 3.52 3.52 3.42 3.42
    下载: 导出CSV

    表  2  我国春季沙尘强度等级与PM10质量浓度(单位:μg·m-3)的转换阈值

    Table  2  Thresholds of PM10 concentration(unit:μg·m-3) for spring dust intensity in China

    地区 扬沙或浮尘 沙尘暴 强沙尘暴 特强沙尘暴
    新疆地区 [245, 4890] [4891, 12388] [12389, 16235] 不低于16236
    西北地区 [408, 6031] [6032, 8150] 不低于8151
    东北地区 [408, 3260] [3261, 7824] 不低于7825
    其余地区 [408, 4727] [4728, 7172] 不低于7173
    下载: 导出CSV

    表  2  我国春季沙尘强度等级与PM10质量浓度(单位:μg·m-3)的转换阈值

    Table  2  Thresholds of PM10 concentration(unit:μg·m-3) for spring dust intensity in China

    地区 扬沙或浮尘 沙尘暴 强沙尘暴 特强沙尘暴
    新疆地区 [245, 4890] [4891, 12388] [12389, 16235] 不低于16236
    西北地区 [408, 6031] [6032, 8150] 不低于8151
    东北地区 [408, 3260] [3261, 7824] 不低于7825
    其余地区 [408, 4727] [4728, 7172] 不低于7173
    下载: 导出CSV

    表  3  2023年春季3—5月沙尘暴及以上级别过程

    Table  3  Processes above sand and dust storm from Mar to May in 2023

    编号 起止时间 级别 主要影响系统
    202306 03-19—03-24 强沙尘暴 地面冷锋、蒙古气旋
    202308 04-09—04-13 沙尘暴 蒙古气旋及冷锋
    202310 04-18—04-21 强沙尘暴 蒙古气旋及冷锋
    202312 04-27—04-29 沙尘暴 冷锋
    202314 05-18—05-21 沙尘暴 蒙古气旋、冷锋
    下载: 导出CSV

    表  3  2023年春季3—5月沙尘暴及以上级别过程

    Table  3  Processes above sand and dust storm from Mar to May in 2023

    编号 起止时间 级别 主要影响系统
    202306 03-19—03-24 强沙尘暴 地面冷锋、蒙古气旋
    202308 04-09—04-13 沙尘暴 蒙古气旋及冷锋
    202310 04-18—04-21 强沙尘暴 蒙古气旋及冷锋
    202312 04-27—04-29 沙尘暴 冷锋
    202314 05-18—05-21 沙尘暴 蒙古气旋、冷锋
    下载: 导出CSV
  • [1] 李莹, 王国复.气象灾害风险管理系统设计与应用.应用气象学报, 2022, 33(5):628-640. doi:  10.11898/1001-7313.20220510

    Li Y, Wang G F. Design and implementation of Meteorological Disaster Risk Management System. J Appl Meteor Sci, 2022, 33(5): 628-640. doi:  10.11898/1001-7313.20220510
    [2] 吴啸天, 王晓妍, 郑栋, 等. 不同类型气溶胶对长三角地区地闪活动影响. 应用气象学报, 2023, 34(5): 608-618. doi:  10.11898/1001-7313.20230509

    Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. doi:  10.11898/1001-7313.20230509
    [3] 肖海霞, 张峰, 王亚强, 等. 基于生成对抗网络和卫星数据的云图临近预报. 应用气象学报, 2023, 34(2): 220-233. doi:  10.11898/1001-7313.20230208

    Xiao H X, Zhang F, Wang Y Q, et al. Nowcasting of cloud images based on generative adversarial network and satellite data. J Appl Meteor Sci, 2023, 34(2): 220-233. doi:  10.11898/1001-7313.20230208
    [4] 李睿劼, 黄梦宇, 丁德平, 等. 基于70 m3膨胀云室的暖云滴谱试验研究. 应用气象学报, 2023, 34(5): 540-551. doi:  10.11898/1001-7313.20230503

    Li R J, Huang M Y, Ding D P, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. doi:  10.11898/1001-7313.20230503
    [5] Ginoux P, Prospero J M, Gill T E, et al. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys, 2012, 50(3). DOI:  10.1029/2012RG000388.
    [6] Jugder D, Gantsetseg B, Davaanyam E, et al. Developing a soil erodibility map across Mongolia. Nat Hazards, 2018, 92(1): 71-94.
    [7] Zhou C H, Gui H, Hu J, et al. Detection of new dust source in Central/East Asia and their impact on simulations of a severe sand and dust storm. J Geophys Res, 2019, 124: 10232-10247. doi:  10.1029/2019JD030753
    [8] Prospero J M, Ginoux P, Torres O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer(TOMS) absorbing aerosol product. Rev Geophys, 2002, 40(1). DOI:  10.1029/2000rg000095.
    [9] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用. 应用气象学报, 2022, 33(6): 641-654. doi:  10.11898/1001-7313.20220601

    Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi:  10.11898/1001-7313.20220601
    [10] 周自江, 王锡稳, 牛若芸. 近47年中国沙尘暴气候特征研究. 应用气象学报, 2002, 13(2): 193-200. http://qikan.camscma.cn/article/id/20020225

    Zhou Z J, Wang X W, Niu R Y. Climate characteristics of sandstorm in China in recent 47 years. Q J Appl Meteor, 2002, 13(2): 193-200. http://qikan.camscma.cn/article/id/20020225
    [11] 马建勇, 何清, 杨兴华, 等. 塔克拉玛干沙漠区域性与塔中局地性沙尘暴特征比较. 沙漠与绿洲气象, 2016, 10(2): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201602007.htm

    Ma J Y, He Q, Yang X H, et al. Characteristics analysis of regional and local sandstorm over the hinterland of Taklimakan Desert: Taking Tazhong as example. Desert Oasis Meteor, 2016, 10(2): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201602007.htm
    [12] 方宗义, 王炜. 2002年我国沙尘暴的若干特征分析. 应用气象学报, 2003, 14(5): 513-521. doi:  10.3969/j.issn.1001-7313.2003.05.001

    Fang Z Y, Wang W. Characteristic analysis of China dust storm in 2002. Q J Appl Meteor, 2003, 14(5): 513-521. doi:  10.3969/j.issn.1001-7313.2003.05.001
    [13] Yumimoto K, Kajino M, Tanaka T Y, et al. Dust vortex in the Taklimakan Desert by Himawari-8 high frequency and resolution observation. Sci Rep, 2019, 9(1). DOI:  10.1038/s41598-018-37861-4.
    [14] Chen S Y, Huang J P, Li J X, et al. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci China Earth Sci, 2017, 60(7): 1338-1355. doi:  10.1007/s11430-016-9051-0
    [15] 田育红, 纪中奎, 刘鸿雁. 内蒙古高原中部主要气候因子及地表覆盖对沙尘暴影响分析. 应用气象学报, 2005, 16(4): 476-483. doi:  10.3969/j.issn.1001-7313.2005.04.008

    Tian Y H, Ji Z K, Liu H Y. Main climatic factors and land cover effects on sandstorms in the central part of Inner Mongolia Plateau. Q J Appl Meteor, 2005, 16(4): 476-483. doi:  10.3969/j.issn.1001-7313.2005.04.008
    [16] 李鑫, 刘煜. CAM5模式中两气溶胶模块的评估. 应用气象学报, 2013, 24(1): 75-86. http://qikan.camscma.cn/article/id/20130108

    Li X, Liu Y. Assessment of two aerosol modules of CAM5. J Appl Meteor Sci, 2013, 24(1): 75-86. http://qikan.camscma.cn/article/id/20130108
    [17] Westphal D L, Toon O B, Carlson T N. A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms. J Geophys Res, 1987, 92(D3): 3027-3049. doi:  10.1029/JD092iD03p03027
    [18] Iversen J D, White B R. Saltation threshold on Earth, Mars and Venus. Sedimentology, 1982, 29(1): 111-119. doi:  10.1111/j.1365-3091.1982.tb01713.x
    [19] Tegen I, Fung I. Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J Geophys Res, 1994, 99(D11): 22897-22914.
    [20] Alfaro S C, Gomes L. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. J Geophys Res, 2001, 106(D16): 18075-18084.
    [21] Shao Y P. A model for mineral dust emission. J Geophys Res, 2001, 106(D17): 20239-20254.
    [22] Marticorena B, Bergametti G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res, 1995, 100(D8): 16415-16430.
    [23] Kok J F. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. PNAS, 2011, 108(3): 1016-1021.
    [24] Dubovik O, Sinyuk A, Lapyonok T, et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J Geophys Res Atmos, 2006, 111(D11). DOI:  10.1029/2005JD006619.
    [25] Nakajima T, Tonna G, Rao R, et al. Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Appl Opt, 1996, 35(15): 2672-2686.
    [26] Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys, 2012, 12(2): 779-799.
    [27] Che H Z, Zhang X Y, Chen H B, et al. Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. J Geophys Res, 2009, 114(D3). DOI:  10.1029/2008JD011030.
    [28] Zhou C H, Gong S L, Zhang X Y, et al. Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/Dust. Atmos Chem Phys, 2008, 8(4): 787-798.
    [29] Zhou C H, Zhang X C, Zhang J, et al. Representations of dynamics size distributions of mineral dust over East Asia by a regional sand and dust storm model. Atmos Res, 2021, 250. DOI:  10.1016/j.atmosres.2020.105403.
    [30] Gong S L, Barrie L A, Blanchet J P, et al. Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development. J Geophys Res, 2003, 108(D1). DOI:  10.1029/2001JD002002.
    [31] Zhou C H, Shen X J, Liu Z R, et al. Simulating aerosol size distribution and mass concentration with simultaneous nucleation, condensation/coagulation, and deposition with the GRAPES-CUACE. J Meteor Res, 2018, 32(2): 265-278.
    [32] Marticorena B, Bergametti G, Aumont B, et al. Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J Geophys Res, 1997, 102(D4): 4387-4404.
    [33] Alfaro S C, Gaudichet A, Gomes L, et al. Modeling the size distribution of a soil aerosol produced by sandblasting. J Geophys Res, 1997, 102(D10): 11239-11249.
    [34] Guggenheim S, Martin R T. Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays Clay Miner, 1995, 43(2): 255-256.
    [35] Alfaro S C, Gaudichet A, Gomes L, et al. Mineral aerosol production by wind erosion: Aerosol particle sizes and binding energies. Geophys Res Lett, 1998, 25(7): 991-994.
    [36] Gong S L, Zhang X Y, Zhao T L, et al. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. J Geophys Res, 2003, 108(D9). DOI: 10.1029/2002JD002632.
  • 加载中
图(18) / 表(6)
计量
  • 摘要浏览量:  288
  • HTML全文浏览量:  86
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-01
  • 修回日期:  2024-06-12
  • 刊出日期:  2024-07-31

目录

    /

    返回文章
    返回