Application of Scale-adaptive Dust Emission Scheme to CMA-CUACE/Dust
-
摘要: 沙尘暴是影响我国重要的灾害性天气之一,针对中国气象局亚洲沙尘暴数值预报系统CMA-CUACE/Dust(China Meteorological Administration Unified Atmospheric Environment for Dust)的沙尘质量浓度在中亚高估、蒙古北部低估、在我国消散过快以及极端沙尘暴预报峰值偏低等问题,应用与模式格距匹配的尺度适应性起沙机制并更新风蚀资料库对模式进行改进。对2021年3月13—17日东亚最强沙尘暴个例和2023年3—5月与业务运行环境一致的连续预报试验表明,改进后的模式(CMA-CUACE/Dust V1.5)有效改善了上述不足,极端沙尘暴过程传输至我国后的沙尘质量浓度峰值与观测接近。连续预报试验TS(threat score)评分显示:CMA-CUACE/Dust V1.5预报一致性和连续性较好,1~5 d不同时效预报TS评分明显高于改进前和韩国模式ADAM(the Asian Dust Aerosol Model),漏报率明显降低,对2023年5次沙尘过程的4次预报TS评分高于0.3,部分过程超过0.5。
-
关键词:
- 沙尘暴数值预报;
- CMA-CUACE/Dust V1.5;
- 尺度适应性;
- 起沙机制;
- 风蚀资料库
Abstract: Sand and dust storms are significant natural disasters which affect East Asia and China in spring, occurring from March to May. Performances of CMA-CUACE/Dust, an operational Asian sand and dust storm numerical forecasting system of CMA since 2006, are analyzed. It’s found that the model overestimates in Central Asia, underestimates in northern Mongolia, and diffuses too quickly in downwind areas far away from the source area, especially in Northern China, Korean Peninsula and Japan, resulting in low peak values or less lingering time there for very extreme sand and dust storm events. A scale-adaptive dust emission scheme is applied by resolving the mean wind speed of the model grid into sectional one which can account for values larger than the mean value by Weibull integration function. This significant aspect is crucial because the dust emission is the third power of the wind in the dust emission scheme. New wind erosion database is also adopted which consists of the updated desertification by using twenty-year surface data and new parameters deduced from site observations in the heart of Gobi Desert, determining the size distribution of the emitted dust together with the soil texture data sampling from main deserts in China.After evaluation for the strongest sand and dust episode of 13-17 in March 2021 in East Asia in the past decade, and the consistent run in the same operational environment from 1 March to 31 May in 2023, it is found that the updated CMA-CUACE/Dust effectively improves disadvantages such as overestimation in Central Asia, underestimation in northern Mongolia, and rapid dissipation in China. The predicted peak dust concentration of the extreme episode closely matches observations in China both in the source area and in Shanghai after a 4-day transportation. Threat score (TS) of three-month forecast run also indicates that the improved model shows good consistency and continuity in forecast results across various forecast lengths. TS for 1-5 days with different forecast lengths is significantly higher than that of the previous operational system and surpasses those of Korean dust model—ADAM (the Asian Dust Aerosol Model). Furthermore, the missing rate is significantly reduced, while the false alarm rate remains almost unchanged. TS for episodes beyond the level of sand and storms are all above 0.3, with some exceeding 0.5. All these findings show that the improved model performs much better than the previous one. -
图 7 2023年3月19—24日沙尘暴过程传输阶段CMA-CUACE/Dust V1.0、CMA-CUACE/Dust V1.5PM10质量浓度预报(填色)与天气现象观测(符号)
Fig. 7 Forecasted PM10 concentration(the shaded) in transportation stage of sand and dust storm event from 19 Mar to 24 Mar in 2023 by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observed phenomena(the mark)
图 7 2023年3月19—24日沙尘暴过程传输阶段CMA-CUACE/Dust V1.0、CMA-CUACE/Dust V1.5PM10质量浓度预报(填色)与天气现象观测(符号)
Fig. 7 Forecasted PM10 concentration(the shaded) in transportation stage of sand and dust storm event from 19 Mar to 24 Mar in 2023 by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observed phenomena(the mark)
图 9 2023年5月18—21日沙尘暴过程起沙阶段和传输阶段CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5沙尘质量浓度预报(填色)与天气现象观测(符号)
Fig. 9 Forecasted dust concentration(the shaded) in onset and transportation stages of sand and dust event from 18 May to 21 May in 2023 by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observed phenomena(the mark)
图 9 2023年5月18—21日沙尘暴过程起沙阶段和传输阶段CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5沙尘质量浓度预报(填色)与天气现象观测(符号)
Fig. 9 Forecasted dust concentration(the shaded) in onset and transportation stages of sand and dust event from 18 May to 21 May in 2023 by CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5 with observed phenomena(the mark)
表 1 CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5中MBA机制释放沙尘的三模态分布的几何平均直径(d)、几何标准差(σ)和缔结动能(e)
Table 1 Geometric mean diameter(d), geometric standard deviation(σ) and binding energy(e) of three modes of dust released in MBA scheme in CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5
分布参数 模态Ⅰ 模态Ⅱ 模态Ⅲ V1.0 V1.5 V1.0 V1.5 V1.0 V1.5 d/μm 1.50 5.75 6.70 13.75 14.2 27.5 σ 1.7 1.7 1.6 1.6 1.5 1.5 e/(g·cm2·s-2) 3.61 3.61 3.52 3.52 3.42 3.42 表 1 CMA-CUACE/Dust V1.0和CMA-CUACE/Dust V1.5中MBA机制释放沙尘的三模态分布的几何平均直径(d)、几何标准差(σ)和缔结动能(e)
Table 1 Geometric mean diameter(d), geometric standard deviation(σ) and binding energy(e) of three modes of dust released in MBA scheme in CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5
分布参数 模态Ⅰ 模态Ⅱ 模态Ⅲ V1.0 V1.5 V1.0 V1.5 V1.0 V1.5 d/μm 1.50 5.75 6.70 13.75 14.2 27.5 σ 1.7 1.7 1.6 1.6 1.5 1.5 e/(g·cm2·s-2) 3.61 3.61 3.52 3.52 3.42 3.42 表 2 我国春季沙尘强度等级与PM10质量浓度(单位:μg·m-3)的转换阈值
Table 2 Thresholds of PM10 concentration(unit:μg·m-3) for spring dust intensity in China
地区 扬沙或浮尘 沙尘暴 强沙尘暴 特强沙尘暴 新疆地区 [245, 4890] [4891, 12388] [12389, 16235] 不低于16236 西北地区 [408, 6031] [6032, 8150] 不低于8151 东北地区 [408, 3260] [3261, 7824] 不低于7825 其余地区 [408, 4727] [4728, 7172] 不低于7173 表 2 我国春季沙尘强度等级与PM10质量浓度(单位:μg·m-3)的转换阈值
Table 2 Thresholds of PM10 concentration(unit:μg·m-3) for spring dust intensity in China
地区 扬沙或浮尘 沙尘暴 强沙尘暴 特强沙尘暴 新疆地区 [245, 4890] [4891, 12388] [12389, 16235] 不低于16236 西北地区 [408, 6031] [6032, 8150] 不低于8151 东北地区 [408, 3260] [3261, 7824] 不低于7825 其余地区 [408, 4727] [4728, 7172] 不低于7173 表 3 2023年春季3—5月沙尘暴及以上级别过程
Table 3 Processes above sand and dust storm from Mar to May in 2023
编号 起止时间 级别 主要影响系统 202306 03-19—03-24 强沙尘暴 地面冷锋、蒙古气旋 202308 04-09—04-13 沙尘暴 蒙古气旋及冷锋 202310 04-18—04-21 强沙尘暴 蒙古气旋及冷锋 202312 04-27—04-29 沙尘暴 冷锋 202314 05-18—05-21 沙尘暴 蒙古气旋、冷锋 表 3 2023年春季3—5月沙尘暴及以上级别过程
Table 3 Processes above sand and dust storm from Mar to May in 2023
编号 起止时间 级别 主要影响系统 202306 03-19—03-24 强沙尘暴 地面冷锋、蒙古气旋 202308 04-09—04-13 沙尘暴 蒙古气旋及冷锋 202310 04-18—04-21 强沙尘暴 蒙古气旋及冷锋 202312 04-27—04-29 沙尘暴 冷锋 202314 05-18—05-21 沙尘暴 蒙古气旋、冷锋 -
[1] 李莹, 王国复.气象灾害风险管理系统设计与应用.应用气象学报, 2022, 33(5):628-640. doi: 10.11898/1001-7313.20220510Li Y, Wang G F. Design and implementation of Meteorological Disaster Risk Management System. J Appl Meteor Sci, 2022, 33(5): 628-640. doi: 10.11898/1001-7313.20220510 [2] 吴啸天, 王晓妍, 郑栋, 等. 不同类型气溶胶对长三角地区地闪活动影响. 应用气象学报, 2023, 34(5): 608-618. doi: 10.11898/1001-7313.20230509Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. doi: 10.11898/1001-7313.20230509 [3] 肖海霞, 张峰, 王亚强, 等. 基于生成对抗网络和卫星数据的云图临近预报. 应用气象学报, 2023, 34(2): 220-233. doi: 10.11898/1001-7313.20230208Xiao H X, Zhang F, Wang Y Q, et al. Nowcasting of cloud images based on generative adversarial network and satellite data. J Appl Meteor Sci, 2023, 34(2): 220-233. doi: 10.11898/1001-7313.20230208 [4] 李睿劼, 黄梦宇, 丁德平, 等. 基于70 m3膨胀云室的暖云滴谱试验研究. 应用气象学报, 2023, 34(5): 540-551. doi: 10.11898/1001-7313.20230503Li R J, Huang M Y, Ding D P, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. doi: 10.11898/1001-7313.20230503 [5] Ginoux P, Prospero J M, Gill T E, et al. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys, 2012, 50(3). DOI: 10.1029/2012RG000388. [6] Jugder D, Gantsetseg B, Davaanyam E, et al. Developing a soil erodibility map across Mongolia. Nat Hazards, 2018, 92(1): 71-94. [7] Zhou C H, Gui H, Hu J, et al. Detection of new dust source in Central/East Asia and their impact on simulations of a severe sand and dust storm. J Geophys Res, 2019, 124: 10232-10247. doi: 10.1029/2019JD030753 [8] Prospero J M, Ginoux P, Torres O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer(TOMS) absorbing aerosol product. Rev Geophys, 2002, 40(1). DOI: 10.1029/2000rg000095. [9] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用. 应用气象学报, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601 [10] 周自江, 王锡稳, 牛若芸. 近47年中国沙尘暴气候特征研究. 应用气象学报, 2002, 13(2): 193-200. http://qikan.camscma.cn/article/id/20020225Zhou Z J, Wang X W, Niu R Y. Climate characteristics of sandstorm in China in recent 47 years. Q J Appl Meteor, 2002, 13(2): 193-200. http://qikan.camscma.cn/article/id/20020225 [11] 马建勇, 何清, 杨兴华, 等. 塔克拉玛干沙漠区域性与塔中局地性沙尘暴特征比较. 沙漠与绿洲气象, 2016, 10(2): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201602007.htmMa J Y, He Q, Yang X H, et al. Characteristics analysis of regional and local sandstorm over the hinterland of Taklimakan Desert: Taking Tazhong as example. Desert Oasis Meteor, 2016, 10(2): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201602007.htm [12] 方宗义, 王炜. 2002年我国沙尘暴的若干特征分析. 应用气象学报, 2003, 14(5): 513-521. doi: 10.3969/j.issn.1001-7313.2003.05.001Fang Z Y, Wang W. Characteristic analysis of China dust storm in 2002. Q J Appl Meteor, 2003, 14(5): 513-521. doi: 10.3969/j.issn.1001-7313.2003.05.001 [13] Yumimoto K, Kajino M, Tanaka T Y, et al. Dust vortex in the Taklimakan Desert by Himawari-8 high frequency and resolution observation. Sci Rep, 2019, 9(1). DOI: 10.1038/s41598-018-37861-4. [14] Chen S Y, Huang J P, Li J X, et al. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci China Earth Sci, 2017, 60(7): 1338-1355. doi: 10.1007/s11430-016-9051-0 [15] 田育红, 纪中奎, 刘鸿雁. 内蒙古高原中部主要气候因子及地表覆盖对沙尘暴影响分析. 应用气象学报, 2005, 16(4): 476-483. doi: 10.3969/j.issn.1001-7313.2005.04.008Tian Y H, Ji Z K, Liu H Y. Main climatic factors and land cover effects on sandstorms in the central part of Inner Mongolia Plateau. Q J Appl Meteor, 2005, 16(4): 476-483. doi: 10.3969/j.issn.1001-7313.2005.04.008 [16] 李鑫, 刘煜. CAM5模式中两气溶胶模块的评估. 应用气象学报, 2013, 24(1): 75-86. http://qikan.camscma.cn/article/id/20130108Li X, Liu Y. Assessment of two aerosol modules of CAM5. J Appl Meteor Sci, 2013, 24(1): 75-86. http://qikan.camscma.cn/article/id/20130108 [17] Westphal D L, Toon O B, Carlson T N. A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms. J Geophys Res, 1987, 92(D3): 3027-3049. doi: 10.1029/JD092iD03p03027 [18] Iversen J D, White B R. Saltation threshold on Earth, Mars and Venus. Sedimentology, 1982, 29(1): 111-119. doi: 10.1111/j.1365-3091.1982.tb01713.x [19] Tegen I, Fung I. Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J Geophys Res, 1994, 99(D11): 22897-22914. [20] Alfaro S C, Gomes L. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. J Geophys Res, 2001, 106(D16): 18075-18084. [21] Shao Y P. A model for mineral dust emission. J Geophys Res, 2001, 106(D17): 20239-20254. [22] Marticorena B, Bergametti G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res, 1995, 100(D8): 16415-16430. [23] Kok J F. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. PNAS, 2011, 108(3): 1016-1021. [24] Dubovik O, Sinyuk A, Lapyonok T, et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J Geophys Res Atmos, 2006, 111(D11). DOI: 10.1029/2005JD006619. [25] Nakajima T, Tonna G, Rao R, et al. Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Appl Opt, 1996, 35(15): 2672-2686. [26] Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys, 2012, 12(2): 779-799. [27] Che H Z, Zhang X Y, Chen H B, et al. Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. J Geophys Res, 2009, 114(D3). DOI: 10.1029/2008JD011030. [28] Zhou C H, Gong S L, Zhang X Y, et al. Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/Dust. Atmos Chem Phys, 2008, 8(4): 787-798. [29] Zhou C H, Zhang X C, Zhang J, et al. Representations of dynamics size distributions of mineral dust over East Asia by a regional sand and dust storm model. Atmos Res, 2021, 250. DOI: 10.1016/j.atmosres.2020.105403. [30] Gong S L, Barrie L A, Blanchet J P, et al. Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development. J Geophys Res, 2003, 108(D1). DOI: 10.1029/2001JD002002. [31] Zhou C H, Shen X J, Liu Z R, et al. Simulating aerosol size distribution and mass concentration with simultaneous nucleation, condensation/coagulation, and deposition with the GRAPES-CUACE. J Meteor Res, 2018, 32(2): 265-278. [32] Marticorena B, Bergametti G, Aumont B, et al. Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J Geophys Res, 1997, 102(D4): 4387-4404. [33] Alfaro S C, Gaudichet A, Gomes L, et al. Modeling the size distribution of a soil aerosol produced by sandblasting. J Geophys Res, 1997, 102(D10): 11239-11249. [34] Guggenheim S, Martin R T. Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays Clay Miner, 1995, 43(2): 255-256. [35] Alfaro S C, Gaudichet A, Gomes L, et al. Mineral aerosol production by wind erosion: Aerosol particle sizes and binding energies. Geophys Res Lett, 1998, 25(7): 991-994. [36] Gong S L, Zhang X Y, Zhao T L, et al. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. J Geophys Res, 2003, 108(D9). DOI: 10.1029/2002JD002632.