Application of Topographic Impact Horizontal Correlation Model to CMA-MESO System
-
摘要: 在背景误差水平相关模型中引入地形作用,研究复杂地形下近地面观测资料同化对分析和预报的影响。CMA-MESO三维变分系统中背景误差水平相关关系采用高斯相关模型描述,观测信息在高度追随坐标的模式面上各向同性传播。然而在地形复杂的近地面层,观测信息传播受到山脉阻挡,因而其背景误差协方差非均匀且各向异性,观测信息传播应随地形高度变化。为此,采用美国国家气象中心NMC方法统计复杂地形下背景误差水平相关结构,构建包含地形高度和地形梯度影响的高斯相关模型,并将改进的水平相关模型应用于CMA-MESO三维变分分析。理想试验表明:考虑地形项的水平相关模型方案使观测信息以随地形高度变化的各向异性形式传播,越过大地形观测信息影响明显减弱,分析增量更加合理。我国北方一次强降水过程分析预报试验表明:随地形高度变化的水平相关模型方案使地面观测信息各向异性传播,削弱了大地形处近地面的分析增量,对降水预报略有正贡献。针对华东地区降水过程进行5 d逐小时快速更新分析预报循环试验结果表明,随地形变化的水平相关模型方案对10 m风场和24 h时效内降水预报有正贡献。Abstract: The impact of near-surface observations on analysis and forecasting in complex terrain is studied by introducing the role of terrain in the background error horizontal correlation model. Observation information propagates isotropically on the model level in the height-based terrain-following coordinates since the background error horizontal correlation in CMA-MESO 3DVar system is characterized by an isotropic Gaussian correlation model. However, in the near-surface layer with complex topography, the propagation of observation information is blocked by mountain ranges, and thus its background error covariance is inhomogeneous and anisotropic, and furthermore, the propagation of observation information should vary with topography. The background error horizontal correlation coefficients in complex terrain are computed using NMC method by National Meteorological Center of the USA. Results show that the blocking of large terrain causes the background error horizontal correlation coefficients to decrease more rapidly across mountain ranges, where the near-surface wind field is more localized than the temperature and humidity fields, with smaller horizontal correlation characteristic length scales, and the wind field information propagates over a closer distance. Based on the actual statistical structure, a Gaussian correlation model that includes effects of terrain height and terrain gradient is constructed, and the newly constructed horizontal correlation model accurately characterizes the decrease after mountain ranges are blocked. In CMA-MESO 3DVar analysis, the impact of terrain on the propagation of observational information is effectively incorporated by including a terrain height error term in the background error level correlation model. Idealized experiments show that the horizontal correlation modeling scheme considering the terrain height error term allows the observation information to propagate in an anisotropic manner that varies with terrain height,and significantly reduces the influence of observation information across large terrain features, thereby achieving more reasonable analysis increments. Results of a forecast experiment for a heavy precipitation process in northern China indicate that the correlation modeling scheme varying with the terrain height propagates the anisotropy of the ground observation information and weakens the analytical increment near the ground with large terrain, and thus makes a slightly biased and positive contribution to the precipitation forecast neutrality. Results of a 5-day hourly cycle rapid updating analysis and forecast for precipitation processes in East China show that the horizontal correlation modeling scheme with terrain elevation makes a positive contribution to 10-m wind field at the ground level and the precipitation forecast within 24 hours.
-
Key words:
- background error;
- horizontal correlation model;
- terrain;
- 3DVar;
- CMA-MESO
-
图 8 2021年10月3日00:00 850 hPa位势高度(黑色等值线,单位:dagpm)、风场(蓝色风矢量)及500 hPa位势高度(红色等值线,单位:dagpm)(a)和250 hPa位势高度(黑色等值线,单位:dagpm)、风场(蓝色风矢量)及3日00:00—4日00:00降水量(绿色等值线,单位:mm)(b)
Fig. 8 850 hPa height(the black contour,unit:dagpm) and wind(the blue vector) with 500 hPa height(the red contour, unit:dagpm) at 0000 UTC 3 Oct 2021(a), 250 hPa height(the black contour, unit:dagpm) and wind(the blue vector) with precipitation forecast(the green isoline, unit:mm) from 0000 UTC 3 Oct to 0000 UTC 4 Oct in 2021(b)
图 8 2021年10月3日00:00 850 hPa位势高度(黑色等值线,单位:dagpm)、风场(蓝色风矢量)及500 hPa位势高度(红色等值线,单位:dagpm)(a)和250 hPa位势高度(黑色等值线,单位:dagpm)、风场(蓝色风矢量)及3日00:00—4日00:00降水量(绿色等值线,单位:mm)(b)
Fig. 8 850 hPa height(the black contour,unit:dagpm) and wind(the blue vector) with 500 hPa height(the red contour, unit:dagpm) at 0000 UTC 3 Oct 2021(a), 250 hPa height(the black contour, unit:dagpm) and wind(the blue vector) with precipitation forecast(the green isoline, unit:mm) from 0000 UTC 3 Oct to 0000 UTC 4 Oct in 2021(b)
-
[1] 张利红, 杜钦, 陈静, 等.地面观测资料在西南地区数值预报中的敏感性试验.气象, 2009, 35(6):26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200906005.htmZhang L H, Du Q, Chen J, et al. Sensitive experiments of surface observation data in numerical weather precipitation over southwestern China. Meteor Mon, 2009, 35(6): 26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200906005.htm [2] 曾波, 张利红, 肖国杰, 等. 地面观测资料同化在GRAPES模式中的应用研究. 高原山地气象研究, 2014, 34(4): 16-23. doi: 10.3969/j.issn.1674-2184.2014.04.003Zeng B, Zhang L H, Xiao G J, et al. Research on assimilation of surface observation data in GRAPES model. Plateau Mt Meteor Res, 2014, 34(4): 16-23. doi: 10.3969/j.issn.1674-2184.2014.04.003 [3] 王曼, 段旭, 李华宏, 等. 青藏高原东侧常规观测资料对WRF模式预报误差的贡献分析. 大气科学学报, 2015, 38(3): 379-387. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503010.htmWang M, Duan X, Li H H, et al. Evaluation of conventional observations contribution on WRF model forecast error in the eastern of Tibetan Plateau. Trans Atmos Sci, 2015, 38(3): 379-387. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503010.htm [4] 徐枝芳, 龚建东, 王建捷, 等. 复杂地形下地面观测资料同化Ⅰ. 模式地形与观测站地形高度差异对地面资料同化的影响研究. 大气科学, 2007, 31(2): 222-232. doi: 10.3878/j.issn.1006-9895.2007.02.04Xu Z F, Gong J D, Wang J J, et al. A study of assimilation of surface observational data in complex terrain part Ⅰ: Influence of the elevation difference between model surface and observation site. Chinese J Atmos Sci, 2007, 31(2): 222-232. doi: 10.3878/j.issn.1006-9895.2007.02.04 [5] 徐枝芳, 龚建东, 王建捷, 等. 复杂地形下地面观测资料同化Ⅱ. 模式地形与观测站地形高度差异代表性误差. 大气科学, 2007, 31(3): 449-458. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200703007.htmXu Z F, Gong J D, Wang J J, et al. A study of assimilation of surface observational data in complex terrain part Ⅱ: Representative error of the elevation difference between model surface and observation site. Chinese J Atmos Sci, 2007, 31(3): 449-458. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200703007.htm [6] 徐枝芳, 龚建东, 李泽椿. 复杂地形下地面观测资料同化Ⅲ. 两种解决模式地形与观测站地形高度差异方法的对比分析. 大气科学, 2009, 33(6): 1137-1147. doi: 10.3878/j.issn.1006-9895.2009.06.02Xu Z F, Gong J D, Li Z C. A study of assimilation of surface observational data in complex terrain part Ⅲ: Comparison analysis of two methods on solving the problem of elevation difference between model surface and observation sites. Chinese J Atmos Sci, 2009, 33(6): 1137-1147. doi: 10.3878/j.issn.1006-9895.2009.06.02 [7] 丁杨, 庄世宇, 顾建峰. GRAPES地面风场同化方案研究. 热带气象学报, 2008, 24(6): 629-640. doi: 10.3969/j.issn.1004-4965.2008.06.007Ding Y, Zhuang S Y, Gu J F. Surface wind observation data assimilation in grapes. J Trop Meteor, 2008, 24(6): 629-640. doi: 10.3969/j.issn.1004-4965.2008.06.007 [8] 陈朝平, 张利红, 方国强, 等. 常规地面观测资料在GRAPES同化系统中的误差控制试验. 高原山地气象研究, 2010, 30(3): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201003003.htmChen C P, Zhang L H, Fang G Q, et al. Quality control experiments of surface observation data in GRAPES 3Dvar over Sichuan Province. Plateau Mt Meteor Res, 2010, 30(3): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201003003.htm [9] 郝民, 龚建东, 徐枝芳. 地面报中高山站资料的应用分析. 气象, 2016, 42(4): 424-435. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201604005.htmHao M, Gong J D, Xu Z F. Application and analysis on the mountain observatory of surface observational data. Meteor Mon, 2016, 42(4): 424-435. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201604005.htm [10] Miller P A, Benjamin S G. A system for the hourly assimilation of surface observations in mountainous and flat terrain. Mon Wea Rev, 1992, 120(10): 2342-2359. doi: 10.1175/1520-0493(1992)120<2342:ASFTHA>2.0.CO;2 [11] Deng X X, Stull R. A mesoscale analysis method for surface potential temperature in mountainous and coastal terrain. Mon Wea Rev, 2005, 133(2): 389-408. doi: 10.1175/MWR-2859.1 [12] Pu Z X, Zhang H L, Anderson J. Ensemble Kalman filter assimilation of near-surface observations over complex terrain: Comparison with 3DVAR for short-range forecasts. Tellus A Dyn Meteor Oceanogr, 2013, 65(1): 1-20. [13] 张依鸣, 刘玉宝, 王昊亮, 等. GSI-3DVar背景误差协方差水平相关特征尺度对地面自动气象站资料同化的适应性研究. 气象科学, 2023, 43(3): 370-383. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202303009.htmZhang Y M, Liu Y B, Wang H L, et al. A study on adaptability of GSI-3DVar background error covariance horizontal scale for surface observation data assimilation. J Meteor Sci, 2023, 43(3): 370-383. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202303009.htm [14] Parrish D F, Derber J C. The national meteorological center's spectral statistical-interpolation analysis system. Mon Wea Rev, 1992, 120(8): 1747-1763. doi: 10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2 [15] 王金成, 庄照荣, 韩威, 等. GRAPES全球变分同化背景误差协方差的改进及对分析预报的影响: 背景误差协方差三维结构的估计. 气象学报, 2014, 72(1): 62-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201401005.htmWang J C, Zhuang Z R, Han W, et al. Improvement of background error covariance of GRAPES global variational assimilation and its influence on analysis and prediction: Estimation of three-dimensional structure of background error covariance. Acta Meteor Sinica, 2014, 72(1): 62-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201401005.htm [16] 王亚华, 杨晓帆, 曾勇虎, 等. GRAPES全球模式背景误差协方差水平结构特征分析. 干旱气象, 2017, 35(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201701008.htmWang Y H, Yang X F, Zeng Y H, et al. Horizontal structural characteristics analysis of global GRAPES model background error covariance. J Arid Meteor, 2017, 35(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201701008.htm [17] 庄照荣, 王瑞春, 王金成, 等. GRAPES-Meso背景误差特征及应用. 应用气象学报, 2019, 30(3): 316-331. doi: 10.11898/1001-7313.20190306Zhuang Z R, Wang R C, Wang J C, et al. Characteristics and application of background errors in GRAPES-Meso. J Appl Meteor Sci, 2019, 30(3): 316-331. doi: 10.11898/1001-7313.20190306 [18] 陈德辉, 沈学顺. 新一代数值预报系统GRAPES研究进展. 应用气象学报, 2006, 17(6): 773-777. http://qikan.camscma.cn/article/id/200606125Chen D H, Shen X S. Recent progress on GRAPES research and application. J Appl Meteor Sci, 2006, 17(6): 773-777. http://qikan.camscma.cn/article/id/200606125 [19] 薛纪善, 陈德辉. 数值预报系统GRAPES的科学设计与应用. 北京: 科学出版社, 2008.Xue J S, Chen D H. Scientific Design and Application of Numerical Forecast System GRAPES. Beijing: Science Press, 2008. [20] 薛纪善, 刘艳, 张林, 等. GRAPES全球三维变分同化系统模式变量分析版文档//中国气象局数值预报中心技术手册. 北京: 中国气象局, 2012: 1-11.Xue J S, Liu Y, Zhang L, et al. Scientific Documentation of GRAPES-3DVar Version for Global Model//Technical Manual of Numerical Weather Prediction Center, CMA. Beijing: China Meterological Administration, 2012: 1-11. [21] 黄丽萍, 陈德辉, 邓莲堂, 等. GRAPES-Meso V4.0主要技术改进和预报效果检验. 应用气象学报, 2017, 28(1): 25-37. doi: 10.11898/1001-7313.20170103Huang L P, Chen D H, Deng L T, et al. Main technical improvements of GRAPES-Meso V4.0 and verification. J Appl Meteor Sci, 2017, 28(1): 25-37. doi: 10.11898/1001-7313.20170103 [22] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用. 应用气象学报, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601 [23] 庄照荣, 李兴良, 陈春刚. 水平相关模型的性质及其在GRAPES三维变分系统中的应用. 大气科学, 2021, 45(1): 229-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101015.htmZhuang Z R, Li X L, Chen C G. Properties of horizontal correlation models and its application in GRAPES 3DVar system. Chinese J Atmos Sci, 2021, 45(1): 229-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101015.htm [24] 庄照荣, 李兴良. 尺度叠加高斯相关模型在GRAPES-RAFS中的应用. 气象学报, 2021, 79(1): 79-93. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101006.htmZhuang Z R, Li X L. The application of superposition of Gaussian components in GRAPES-RAFS. Acta Meteor Sinica, 2021, 79(1): 79-93. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101006.htm [25] 庄照荣, 江源, 田伟红, 等. CMA-MESO逐时快速更新同化预报系统及其短临预报效果初步分析. 大气科学, 2023, 47(4): 925-942. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202304001.htmZhuang Z R, Jiang Y, Tian W H, et al. Hourly rapid updating assimilation forecast system of CMA-MESO and preliminary analysis of short-term forecasting effect. Chinese J Atmos Sci, 2023, 47(4): 925-942. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202304001.htm [26] 马旭林, 庄照荣, 薛纪善, 等. GRAPES非静力数值预报模式的三维变分资料同化系统的发展. 气象学报, 2009, 67(1): 50-60. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200901007.htmMa X L, Zhuang Z R, Xue J S, et al. Development of 3-D variational data assimilation system for the nonhydrostatic numerical weather prediction model-GRAPES. Acta Meteor Sinica, 2009, 67(1): 50-60. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200901007.htm [27] 车少静, 李想, 丁婷, 等. 秋行夏令: 2021年10月初北方致灾性持续暴雨及水汽极端性分析. 大气科学学报, 2021, 44(6): 825-834. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202106003.htmChe S J, Li X, Ding T, et al. Typical summer rainstorm occurred in mid-autumn: Analysis of a disastrous continuous rainstorm and its extreme water vapor transport in northern China in early October 2021. Trans Atmos Sci, 2021, 44(6): 825-834. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202106003.htm [28] 李多, 顾薇. 2021年秋季我国北方地区降水异常偏多的特征及成因分析. 气象, 2022, 48(4): 494-503. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202204010.htmLi D, Gu W. Analysis of characteristics and causes of precipitation anomalies over northern China in autumn 2021. Meteor Mon, 2022, 48(4): 494-503. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202204010.htm [29] 高洋, 蔡淼, 曹治强, 等. "21·7"河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604 [30] 齐道日娜, 何立富, 王秀明, 等. "7·20" 河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101 [31] 张博, 张芳华, 李晓兰, 等. "23·7" 华北特大暴雨数值预报检验评估. 应用气象学报, 2024, 35(1): 17-32. doi: 10.11898/1001-7313.20240102Zhang B, Zhang F H, Li X L, et al. Verification and assessment of "23·7" severe rainstorm numerical prediction in North China. J Appl Meteor Sci, 2024, 35(1): 17-32. doi: 10.11898/1001-7313.20240102 [32] Yang M J, Gong J D, Wang R C, et al. A comparison of the blending and constraining methods to introduce large-scale information into GRAPES mesoscale analysis. J Trop Meteor, 2019, 25(2): 227-244. [33] 朱立娟, 龚建东, 黄丽萍, 等. GRAPES三维云初始场形成及在短临预报中的应用. 应用气象学报, 2017, 28(1): 38-51. doi: 10.11898/1001-7313.20170104Zhu L J, Gong J D, Huang L P, et al. Three-dimensional cloud initial field created and applied to GRAPES numerical weather prediction nowcasting. J Appl Meteor Sci, 2017, 28(1): 38-51. doi: 10.11898/1001-7313.20170104 [34] 栗晗, 王新敏, 吕林宜, 等. 黄淮地区副高边缘型降水数值预报精细化检验. 应用气象学报, 2023, 34(4): 413-425. doi: 10.11898/1001-7313.20230403Li H, Wang X M, Lü L Y, et al. Refined verification of numerical forecast of subtropical high edge precipitation in Huanghuai Region. J Appl Meteor Sci, 2023, 34(4): 413-425. doi: 10.11898/1001-7313.20230403 [35] 庄照荣, 陈静, 黄丽萍, 等. 全球和区域分析的混合方案对区域预报的影响试验. 气象, 2018, 44(12): 1509-1517. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201812001.htmZhuang Z R, Chen J, Huang L P, et al. Impact experiments for regional forecast using blending method of global and regional analyses. Meteor Mon, 2018, 44(12): 1509-1517. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201812001.htm [36] 庄照荣, 王瑞春, 李兴良. 全球大尺度信息在3 km GRAPES-RAFS系统中的应用. 气象学报, 2020, 78(1): 33-47. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001003.htmZhuang Z R, Wang R C, Li X L. Application of global large scale information to GRAEPS RAFS system. Acta Meteor Sinica, 2020, 78(1): 33-47. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001003.htm [37] 韩念霏, 杨璐, 陈明轩, 等. 京津冀站点风温湿要素的机器学习订正方法. 应用气象学报, 2022, 33(4): 489-500. doi: 10.11898/1001-7313.20220409Han N F, Yang L, Chen M X, et al. Machine learning correction of wind, temperature and humidity elements in Beijing-Tianjin-Hebei Region. J Appl Meteor Sci, 2022, 33(4): 489-500. doi: 10.11898/1001-7313.20220409