Vertical Activity Characteristics of Pleonomus Canaliculatus in Winter Wheat and Summer Maize Rotation Fields
-
摘要: 基于河北固城农业气象国家野外科学观测研究站2019—2020年、2021—2022年冬小麦-夏玉米轮作田沟金针虫在土壤中分层调查数据, 引入虫口重量指标, 结合虫口密度指标, 揭示沟金针虫在冬小麦-夏玉米轮作田为害-休眠动态变化, 讨论沟金针虫在土壤中垂直活动特征、气象条件与其相关性以及对冬小麦产量影响。结果表明: 沟金针虫在冬小麦-夏玉米轮作田存在3个为害期和3个休眠期, 且交替出现。3个为害期出现在冬小麦返青-拔节期、夏玉米幼苗期、冬小麦秋苗期, 3个休眠期出现在冬小麦越冬期、冬小麦成熟-收获期、夏玉米灌浆-成熟期, 3个为害期中以冬小麦返青-拔节期最为严重。冬季偏暖及春季回暖早, 沟金针虫表现出晚下早上特征, 使得沟金针虫冬季休眠期缩短而为害活动期延长; 土壤温度、湿度以及食源关系共同影响沟金针虫为害、休眠以及取食活动, 其为害适宜土壤重量含水率约为15%~18%, 适宜土壤温度为14~18 ℃。分析沟金针虫为害与冬小麦减产率可知, 虫口密度每增加10 m-2或虫口重量每增加1.0 g·m-2, 可导致减产率增加5.1%。Abstract: Based on the stratified survey data of Pleonomus canaliculatus in the soil of winter wheat and summer maize rotation field in North China Plain, the vertical activity of Pleonomus canaliculatus in the soil of winter wheat and summer maize rotation fields, the correlation between meteorological conditions and farmland planting management are observed and analyzed, and effects of Pleonomus canaliculatus damage on the yield of winter wheat are analyzed. By combining the insect population weight index with population density index, characteristics of the harm-dormancy activity of Pleonomus canaliculatus are investigated comprehensively in different soil layers. Results show that in the winter wheat and summer maize rotation growing season, there are 3 harm and 3 dormant periods, 3 harm periods appear in the winter wheat regreening-jointing period, the summer maize seedling period and the autumn seedling period of winter wheat, and 3 dormant periods appear in winter wheat overwintering period, winter wheat ripening-harvesting period and summer maize filling-ripening period. Among 3 harm periods, winter wheat regreening-jointing period is the most serious, which could lead to serious yield reduction of winter wheat. Winter is warmer, and spring temperature is warmer early, so Pleonomus canaliculatus exhibits characteristics of going down late and coming up early, which shortens the dormant period in winter and prolong the harmful activity period. Soil temperature, moisture, and the relationship between food and source affect the damage, dormancy, and feeding activities of Pleonomus canaliculatus. The suitable soil moisture content for it is about 15% to 18%, and the suitable soil temperature is 14 to 18 ℃. In summer, Pleonomus canaliculatus may enter dormancy or reduce activity due to lack of food sources or high temperatures and humidity of soil, Pleonomus canaliculatus can enter the dormancy or reduced activity. The analysis of winter wheat yield reduction caused by Pleonomus canaliculatus damage shows that the yield reduction rate is increased by 5.1% with an increase of 10 m-2 in insect population density or with an increase of 1.0 g·m-2 in insect weight. Results provide reference for agricultural production in North China to address climate change and scientifically manage farm to avoid diseases and pests.
-
表 1 作物发育阶段0~10 cm土层沟金针虫虫口密度占比、虫口重量占比及最大沟金针虫平均特征
Table 1 Population density ratio, population weight ratio of Pleonomus canaliculatus and average characteristics of maximum Pleonomus canaliculatus at crops development stage in 0-10 cm soil layer
名称 时段 冬小麦越冬期 冬小麦返青-拔节期 冬小麦成熟-收获期 夏玉米幼苗期 夏玉米灌浆-成熟期 冬小麦秋苗期 虫口密度占比/% 2019—2020年 1.80 60.13 32.17 43.23 9.34 52.90 2021—2022年 10.29 83.91 57.14 61.90 23.00 62.27 平均 6.05 72.02 44.66 52.57 16.17 57.59 虫口重量占比/% 2019—2020年 0.97 53.17 14.83 44.41 6.09 41.23 2021—2022年 6.17 77.70 46.71 54.85 16.86 47.90 平均 3.57 65.44 30.77 49.63 11.48 44.57 最大沟金针虫平均长度/mm 2019—2020年 26.65 30.55 29.21 30.00 26.70 28.01 2021—2022年 28.98 31.14 26.29 29.02 28.11 28.67 平均 27.82 30.85 27.75 29.51 27.41 28.34 最大沟金针虫平均宽度/mm 2019—2020年 3.43 3.82 3.85 4.02 3.60 3.78 2021—2022年 3.91 3.98 3.52 3.84 3.72 3.80 平均 3.69 3.90 3.69 3.93 3.66 3.79 表 2 2020年、2022年麦田沟金针虫虫口密度、虫口重量与虫害株率、籽粒减产率关系
Table 2 Relationship between population density, population weight of Pleonomus canaliculatus and pest infestation rate, grain yield reduction rate in 2020 and 2022
项目 2020年 2022年 平均变率 关系式 R2 关系式 R2 虫口密度与虫害株率 y=0.6667x+13.684 0.9311 y=0.4628x-4.1997 0.9188 5.65%·(10 m-2)-1 虫口重量与虫害株率 y=5.8605x+12.852 0.9215 y=5.0494x-3.402 0.9122 5.46%·(1.0 g·m-2)-1 虫口密度与减产率 y=-0.5275x-17.96 0.8694 y=-0.4974x+8.2421 0.9704 -5.13%·(10 m-2)-1 虫口重量与减产率 y=-4.6974x-16.884 0.8833 y=-5.4246x+7.3687 0.9626 -5.06%·(1.0 g·m-2)-1 虫害株率与减产率 y=-0.797x-6.8235 0.9477 y=-1.0069x+1.503 0.9271 -9.02%·(10.0 %)-1 -
[1] 吴鹏. IPCC《气候变化与土地特别报告》释放了哪些信号. 中国气象报, 2019-08-15(3).Wu P. What Signals of IPCC Special Report on Climate Change and Land Are Released. China Meteorological News, 2019-08-15(3). [2] 周广胜. 中国农业应对气候变化. 北京: 气象出版社, 2014.Zhou G S. China Agriculture Responds to Climate Change. Beijing: China Meteorological Press, 2014. [3] Deutsch C A, Tewksbury J J, Tigchelaar M, et al. Increase in crop losses to insect pests in a warming climate. Science, 2018, 361(6405): 916-919. doi: 10.1126/science.aat3466 [4] 熊伟, 郭丽娜. 气候变化"威胁" 中国农业. 华夏星火, 2009(7): 58-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXH200907022.htmXiong W, Guo L N. Climate change "threatens" agriculture in China. Agric Econ, 2009(7): 58-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXH200907022.htm [5] 霍治国, 李茂松, 李娜, 等. 季节性变暖对中国农作物病虫害的影响. 中国农业科学, 2012, 45(11): 2168-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201211006.htmHuo Z G, Li M S, Li N, et al. Impacts of seasonal climate warming on crop diseases and pests in China. Sci Agric Sinica, 2012, 45(11): 2168-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201211006.htm [6] 霍治国, 李茂松, 王丽, 等. 降水变化对中国农作物病虫害的影响. 中国农业科学, 2012, 45(10): 1935-1945. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201210007.htmHuo Z G, Li M S, Wang L, et al. Impacts of precipitation variations on crop diseases and pests in China. Sci Agric Sinica, 2012, 45(10): 1935-1945. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201210007.htm [7] 李祎君, 王春乙, 赵蓓, 等. 气候变化对中国农业气象灾害与病虫害的影响. 农业工程学报, 2010, 26(增刊Ⅰ): 263-271. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2010S1049.htmLi Y J, Wang C Y, Zhao B, et al. Effects of climate change on agricultural meteorological disaster and crop insects diseases. Trans Chinese Soc Agric Eng, 2010, 26(Suppl Ⅰ): 263-271. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2010S1049.htm [8] 付晓伟, 吴孔明. 迁飞性昆虫对全球气候变化的响应. 中国农业科学, 2015, 48(增刊Ⅰ): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK2015S1001.htmFu X W, Wu K M. Responses of migratory insects to global climate change. Sci Agric Sinica, 2015, 48(Suppl Ⅰ): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK2015S1001.htm [9] 戈峰. 应对全球气候变化的昆虫学研究. 应用昆虫学报, 2011, 48(5): 1117-1122. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201105002.htmGe F. Challenges facing entomologists in a changing global climate. Chinese J Appl Entomol, 2011, 48(5): 1117-1122. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201105002.htm [10] 王纯枝, 张蕾, 郭安红, 等. 基于大气环流的稻纵卷叶螟气象预测模型. 应用气象学报, 2019, 30(5): 565-576. doi: 10.11898/1001-7313.20190505 Wang C Z, Zhang L, Guo A H, et al. Long-term meteorological prediction model on the occurrence and development of rice leaf roller based on atmospheric circulation. J Appl Meteor Sci, 2019, 30(5): 565-576. doi: 10.11898/1001-7313.20190505 [11] 郭安红, 王纯枝, 邓环环, 等. 草地贪夜蛾迁飞大气动力条件分析及过程模拟. 应用气象学报, 2022, 33(5): 541-554. doi: 10.11898/1001-7313.20220503 Guo A H, Wang C Z, Deng H H, et al. Atmospheric dynamics analysis and simulation of the migration of fall armyworm. J Appl Meteor Sci, 2022, 33(5): 541-554. doi: 10.11898/1001-7313.20220503 [12] 王纯枝, 霍治国, 张蕾, 等. 北方地区小麦蚜虫气象适宜度预报模型构建. 应用气象学报, 2020, 31(3): 280-289. doi: 10.11898/1001-7313.20200303 Wang C Z, Huo Z G, Zhang L, et al. Construction of forecasting model of meteorological suitability for wheat aphids in the northern China. J Appl Meteor Sci, 2020, 31(3): 280-289. doi: 10.11898/1001-7313.20200303 [13] 王纯枝, 霍治国, 郭安红, 等. 中国北方冬小麦蚜虫气候风险评估. 应用气象学报, 2021, 32(2): 160-174. doi: 10.11898/1001-7313.20210203 Wang C Z, Huo Z G, Guo A H, et al. Climatic risk assessment of winter wheat aphids in northern China. J Appl Meteor Sci, 2021, 32(2): 160-174. doi: 10.11898/1001-7313.20210203 [14] 中国农业科学院植物保护研究所, 中国植物保护学会. 中国农作物病虫害(第3版). 北京: 中国农业出版社, 2015.The Institute of Plant Protection, Chinese Academy of Agricultural Sciences, China Society of Plant Protection. Crop Diseases and Insect Pests in China(3rd Ed). Beijing: China Agriculture Press, 2015. [15] 仵均祥. 农业昆虫学(北方本)(第3版). 北京: 中国农业出版社, 2016.Wu J X. Agricultural Entomology: Northern Edition(3rd Ed). Beijing: China Agriculture Press, 2016. [16] 邹钟琳. 昆虫生态学. 上海: 上海科学技术出版社, 1980.Zou Z L. Insect Ecology. Shanghai: Shanghai Scientific & Technical Publishers, 1980. [17] 魏鸿钧. 中国地下害虫. 上海: 上海科学技术出版社, 1989.Wei H J. Underground Pests in China. Shanghai: Shanghai Scientific & Technical Publishers, 1989. [18] 罗益镇, 崔景岳. 土壤昆虫学. 北京: 中国农业出版社, 1995.Luo Y Z, Cui J Y. Soil Entomology. Beijing: China Agriculture Press, 1995. [19] 陈瑜, 马春森. 气候变暖对昆虫影响研究进展. 生态学报, 2010, 30(8): 2159-2172. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201008026.htmChen Y, Ma C S. Effect of global warming on insect: A literature review. Acta Ecol Sinica, 2010, 30(8): 2159-2172. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201008026.htm [20] 陈爱端. 金针虫对几种环境因子适应性研究. 北京: 中国农业科学院, 2011.Chen A D. The Adaptability of Wireworm for Several Environmental Factors. Beijing: Chinese Academy of Agricultural Sciences, 2011. [21] 任三学, 赵花荣, 齐月, 等. 气候变化背景下麦田沟金针虫爆发性发生为害. 应用气象学报, 2020, 31(5): 620-630. doi: 10.11898/1001-7313.20200509Ren S X, Zhao H R, Qi Y, et al. The outbreak and damage of the Pleonomus canaliculatus in wheat field under the background of climate change. J Appl Meteor Sci, 2020, 31(5): 620-630. doi: 10.11898/1001-7313.20200509 [22] 陆俊姣, 董晋明, 任美凤, 等. 山西临汾冬小麦-夏玉米轮作田地下害虫种群在土壤中的迁移规律. 昆虫学报, 2017, 60(9): 1046-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-KCXB201709009.htmLu J J, Dong J M, Ren M F, et al. Migration patterns of subterranean pest insects in the soil of winter wheat-summer corn rotation fields in Linfen, Shanxi. Acta Entomol Sinica, 2017, 60(9): 1046-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-KCXB201709009.htm [23] 何振贤, 郭更博, 刘子卓. 沟金针虫成灾因素分析及综合治理对策. 河南农业科学, 2006(11): 63-64. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY200611023.htmHe Z X, Guo G B, Liu Z Z. Analysis of disaster factors of Flammulina velutipes and its comprehensive control countermeasures. J Henan Agric Sci, 2006(11): 63-64. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY200611023.htm [24] 宋艳玲, 周广胜, 郭建平, 等. 北方冬小麦冬季冻害及播期延迟应对. 应用气象学报, 2022, 33(4): 454-465. doi: 10.11898/1001-7313.20220406 Song Y L, Zhou G S, Guo J P, et al. Freezing injury of winter wheat in northern China and delaying sowing date to adapt. J Appl Meteor Sci, 2022, 33(4): 454-465. doi: 10.11898/1001-7313.20220406 [25] 任三学, 赵花荣, 周广胜, 等. 郯麦98对播种期变化的响应. 应用气象学报, 2023, 34(3): 362-372. doi: 10.11898/1001-7313.20230309 Ren S X, Zhao H R, Zhou G S, et al. Response of winter wheat tanmai 98 to sowing date adjustments. J Appl Meteor Sci, 2023, 34(3): 362-372. doi: 10.11898/1001-7313.20230309 [26] 齐道日娜, 何立富. 2022年我国夏季极端高温阶段性特征及成因. 应用气象学报, 2023, 34(4): 385-399. 10.11898/1001-7313.20230401 Chyi D, He L F. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J Appl Meteor Sci, 2023, 34(4): 385-399. 10.11898/1001-7313.20230401 [27] 霍治国, 张海燕, 李春晖, 等. 中国玉米高温热害研究进展. 应用气象学报, 2023, 34(1): 1-14. doi: 10.11898/1001-7313.20230101 Huo Z G, Zhang H Y, Li C H, et al. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34(1): 1-14. doi: 10.11898/1001-7313.20230101 [28] 党志浩, 陈法军. 昆虫对降雨和干旱的响应与适应. 应用昆虫学报, 2011, 48(5): 1161-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201105007.htmDang Z H, Chen F J. Responses of insects to rainfall and drought. Chinese J Appl Entomol, 2011, 48(5): 1161-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201105007.htm [29] 罗益镇, 牛赡光, 龙岩. 麦田沟金针虫种群垂直分布与夏眠的生态特性及其与防治的关系. 生态学杂志, 1994, 13(3): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ403.001.htmLuo Y Z, Niu S G, Long Y. Ecological characteristics of vertical distribution and summer dormancy of Flammulina velutipes population in wheat field ditch and its relationship with control. Chinese J Ecol, 1994, 13(3): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ403.001.htm [30] 罗益镇, 牛赡光, 龙岩, 等. 沟金针虫为害小麦产量损失与经济阈值的研究. 山东农业科学, 1991, 23(5): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI199105015.htmLuo Y Z, Niu S G, Long Y, et al. Study on yield loss and economic threshold of wheat damaged by Noctuidae. Shandong Agric Sci, 1991, 23(5): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI199105015.htm [31] 张润杰, 何新凤. 气候变化对农业害虫的潜在影响. 生态学杂志, 1997, 16(6): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ706.007.htmZhang R J, He X F. Potential impact of climate change on agricultural pests. Chinese J Ecol, 1997, 16(6): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ706.007.htm