Ridge Regression Prediction Model for Temperatures of South China in May
-
摘要: 该文研究5月华南气温变化特征及其成因, 寻找海温前兆信号并探讨其影响气温的可能物理机制, 建立5月华南气温的多元岭回归预测模型。结果表明: 5月华南气温异常偏高(偏低)年表现为乌拉尔山、东亚的异常反气旋(气旋)环流, 以及贝加尔湖附近的异常气旋(反气旋)环流, 使东亚经向环流减弱(加强), 冷空气活动减弱(加强); 同时副热带高压在华南地区异常西伸(东退)和西南风减弱(加强)。海温前兆信号主要为前冬北大西洋三极子型、印度洋全区一致型, 其中北大西洋海温前兆信号的相关性最强。北大西洋海温前兆信号为正(负)位相时, 通过欧亚遥相关波列使经向环流减弱(增强)和冷空气活动减弱(加强), 同时副热带高压在华南一带西伸(东退), 有利于华南地区气温偏高(低)。利用前冬前兆信号所建立的5月气温多元岭回归预测模型, 拟合效果较好并对异常年份有较好的预测能力。Abstract: The temperature variability of South China in May is investigated, identifying precursor signals in sea surface temperatures (SST) and exploring the potential physical processes influencing these variations. A ridge regression prediction model has been developed. The analysis reveals that during years with anomalously high (low) temperature in May, there are observed anticyclonic (cyclonic) circulations over the Ural Mountains and East Asia, along with anomalous cyclonic (anticyclonic) circulations near Lake Baikal. These conditions weaken (strengthen) the East Asian meridional circulation, reducing (intensifying) cold air activity. Concurrently, the subtropical high abnormally extends westward (retreats eastward) in the South China region, while the southwest winds weaken (strengthen).The key precursor SST signals for temperature anomalies in May are identified, primarily from the North Atlantic tripole pattern in the preceding winter and the basin-wide variability pattern in the Indian Ocean. Among these, SST signal of the North Atlantic Ocean shows the strongest correlation. When the North Atlantic Ocean SST precursor signal is in a positive (or negative) phase, it influences the meridional circulation to weaken (or strengthen) and reduces (or intensifies) cold air activity through the Eurasian teleconnection wave train. Simultaneously, the subtropical high extends westward (or retreats eastward) in South China, resulting in higher (or lower) temperature.The multivariate ridge regression prediction model for temperature in May, developed using precursor signals from the preceding winter, demonstrates good fitting results and predictive capability for anomalous years. The model's performance is validated through various statistical tests, including mean squared error (MSE) and correlation coefficients, which demonstrate its robustness and accuracy in predicting temperature anomalies in May. Results indicate that the ridge regression model offers a significant advantage over traditional multiple linear regression models in this context. The model's predictive power is particularly remarkable in capturing the overall trends and variations of temperature in May, although it exhibits some limitations in predicting extreme values. The research provides valuable insights into the climate dynamics of South China and offers a reliable tool for enhancing the accuracy of short-term climate forecasts in the region, and underscores the importance of considering large-scale climate signals, such as the North Atlantic Tripole and Indian Ocean Basin-wide variability, in the development of predictive models for regional climate anomalies. By incorporating these signals, the model can better account for the complex interactions between different climate systems, leading to more accurate and reliable forecasts. This approach not only enhances our understanding of the factors influencing temperature in South China in May, but also provides a framework for future research and operational forecasting efforts aimed at mitigating impacts of climate variability.
-
图 2 气温异常年的大气环流和海温合成图
(黄色点和紫色箭头分别表示高度场和风场达到0.1显著性水平,下同) (a)异常偏高年500 hPa高度场标准化距平与合成风场,(b)异常偏低年500 hPa高度场标准化距平与合成风场,(c)异常偏高年850 hPa高度场标准化距平与合成风场, (d)异常偏低年850 hPa高度场标准化距平与合成风场, (e)异常偏高年海温标准化距平,(f)异常偏低年海温标准化距平
Fig. 2 Composite map of atmospheric circulation and sea surface temerature(SST) in abnormal temperature years
(the yellow dot and the purple arrow denote the height and wind fields passing the test of 0.1 level, similarly hereinafter) (a)500 hPa height normalized anomaly and resultant wind field in years of abnormally high temperature, (b)500 hPa height normalized anomaly and resultant wind field in years of abnormally low temperature, (c)850 hPa height normalized anomaly and resultant wind field in years of abnormally high temperature, (d)850 hPa height normalized anomaly and resultant wind field in years of abnormally low temperature, (e)SST standardization anomaly in years of abnormally high temperature, (f)SST standardization anomaly in years of abnormally low temperature
表 1 不同拟合样本量对应的岭回归模型
Table 1 Ridge regression model corresponding to different numbers of fitting samples and testing
训练拟合样本量 回报期样本量 最优α 拟合期相关系数 拟合期均方误差 回报期相关系数 回报期均方误差 50 12 1.38 0.470 0.426 0.520 1.147 49 13 1.45 0.469 0.433 0.522 1.073 48 14 1.31 0.491 0.427 0.470 1.013 47 15 1.31 0.491 0.436 0.485 0.946 46 16 1.33 0.488 0.444 0.485 0.894 45 17 1.38 0.497 0.402 0.499* 0.843 44 18 1.47 0.499 0.403 0.462 0.983 43 19 1.42 0.506 0.408 0.449 0.929 42 20 1.57 0.494 0.404 0.456* 0.941 41 21 1.68 0.492 0.403 0.452* 0.940 40 22 1.69 0.488 0.413 0.451* 0.902 39 23 1.71 0.486 0.424 0.446* 0.864 38 24 1.97 0.443 0.430 0.520* 0.860 注:*表示达到0.05显著性水平。 -
[1] 李崇银, 张利平. 南海夏季风活动及其影响. 大气科学, 1999, 23(3): 257-266. doi: 10.3878/j.issn.1006-9895.1999.03.01Li C Y, Zhang L P. Summer monsoon activities in the South China Sea and its impacts. Sci Atmos Sinica, 1999, 23(3): 257-266. doi: 10.3878/j.issn.1006-9895.1999.03.01 [2] 广东省气候中心. 广东省月气候影响评价(2021年5月). 广东省气象业务网, 2021.Guangdong Climate Center. Evaluation of Monthly Climate Impacts in Guangdong Province(May 2021). Guangdong Provincial Meteorological Service Website, 2021. [3] 广东省气候中心. 广东省月气候影响评价(2022年5月). 广东省气象业务网, 2022.Guangdong Climate Center. Evaluation of Monthly Climate Impacts in Guangdong Province(May 2022). Guangdong Provincial Meteorological Service Website, 2022. [4] 宋艳玲, 周广胜, 郭建平, 等. 气候变暖对冬小麦徐麦33产量和品质影响. 应用气象学报, 2023, 34(5): 552-561. doi: 10.11898/1001-7313.20230504 Song Y L, Zhou G S, Guo J P, et al. Influences of global warming on yield structure and quality of winter wheat Xumai 33. J Appl Meteor Sci, 2023, 34(5): 552-561. doi: 10.11898/1001-7313.20230504 [5] 鲁韦坤, 李蒙, 胡雪琼, 等. 气候变化对云南橡胶潜在种植区的影响. 应用气象学报, 2023, 34(3): 379-384. doi: 10.11898/1001-7313.20230311Lu W K, Li M, Hu X Q, et al. Impact of climate change on potential planting areas of rubber trees in Yunnan. J Appl Meteor Sci, 2023, 34(3): 379-384. doi: 10.11898/1001-7313.20230311 [6] 黄光民, 刘尉, 王广伦. 低温对广东果树、花卉形态及花期的影响. 广东气象, 2010, 32(5): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201005014.htmHuang G M, Liu W, Wang G L. Effects of low temperature on the morphology and flowering period of fruit trees and flowers in Guangdong Province. Guangdong Meteor, 2010, 32(5): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201005014.htm [7] 陈厚彬, 苏钻贤, 杨胜男. 2022年全国荔枝生产形势分析. 中国热带农业, 2022(3): 5-14. doi: 10.3969/j.issn.1673-0658.2022.03.002Chen H B, Su Z X, Yang S N. Analysis on the litchi production situation in 2022. China Trop Agric, 2022(3): 5-14. doi: 10.3969/j.issn.1673-0658.2022.03.002 [8] Liu X Y, Xiao Y L, Zi J, et al. Differential effects of low and high temperature stress on pollen germination and tube length of mango(Mangifera indica L. ) genotypes. Sci Rep, 2023, 13: 611. doi: 10.1038/s41598-023-27917-5 [9] 龚志强, 王晓娟, 支蓉, 等. 中国近58年温度极端事件的区域特征及其与气候突变的联系. 物理学报, 2009, 58(6): 4342-4353. doi: 10.3321/j.issn:1000-3290.2009.06.114Gong Z Q, Wang X J, Zhi R, et al. Regional characteristics of temperature changes in China during the past 58 years and its probable correlation with abrupt temperature change. Acta Phys Sinica, 2009, 58(6): 4342-4353. doi: 10.3321/j.issn:1000-3290.2009.06.114 [10] 周雅清, 任国玉. 中国大陆1956—2008年极端气温事件变化特征分析. 气候与环境研究, 2010, 15(4): 405-417. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201004010.htmZhou Y Q, Ren G Y. Variation characteristics of extreme temperature indices in China's mainland during 1956-2008. Clim Environ Res, 2010, 15(4): 405-417. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201004010.htm [11] 金爱浩. 华南夏季极端高温年际、年代际变化及其与海温的可能联系. 南京: 南京信息工程大学, 2019.Jin A H. The Interannual and Interdecadal Variation of South China Summer Extreme Hot Events and Its Possible Relationship with Sea Surface Temperature. Nanjing: Nanjing University of Information Science & Technology, 2019. [12] 齐道日娜, 何立富. 2022年我国夏季极端高温阶段性特征及成因. 应用气象学报, 2023, 34(4): 385-399. doi: 10.11898/1001-7313.20230401 Chyi D, He L F. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J Appl Meteor Sci, 2023, 34(4): 385-399. doi: 10.11898/1001-7313.20230401 [13] 彭京备, 孙淑清, 林大伟. 2022年8月长江流域持续性极端高温事件成因. 应用气象学报, 2023, 34(5): 527-539. doi: 10.11898/1001-7313.20230502Peng J B, Sun S Q, Lin D W. The extreme hot event along the Yangtze Basins in August 2022. J Appl Meteor Sci, 2023, 34(5): 527-539. doi: 10.11898/1001-7313.20230502 [14] 徐飞, 张汶海, 赵玲玲, 等. 1960—2018年珠江流域极端气温时空变化特征. 山地学报, 2022, 40(3): 343-354. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202203002.htmXu F, Zhang W H, Zhao L L, et al. Spatio-temporal variability in extreme temperature from 1960 to 2018 in the Pearl River Basin, China. Mt Res, 2022, 40(3): 343-354. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202203002.htm [15] 唐懿, 蔡雯悦, 翟建青, 等. 2021年夏季中国气候异常特征及主要气象灾害. 干旱气象, 2022, 40(2): 179-186. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202202002.htmTang Y, Cai W Y, Zhai J Q, et al. Climatic anomalous features and major meteorological disasters in China in summer of 2021. J Arid Meteor, 2022, 40(2): 179-186. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202202002.htm [16] 董少柔, 何健, 饶方成, 等. 华南地区2020年4月异常低温成因浅析. 气象研究与应用, 2021, 42(2): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-GXQX202102015.htmDong S R, He J, Rao F C, et al. Cause analysis of abnormal low temperature in South China in April 2020. J Meteor Res Appl, 2021, 42(2): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-GXQX202102015.htm [17] 谢洁宏, 胡娅敏, 叶梦茜. 2022年5月广东气温异常偏低的气候特征及其成因. 广东气象, 2024, 46(1): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX202401005.htmXie J H, Hu Y M, Ye M Q. On the climatological characteristics of anomalously lower air temperature in Guangdong in May 2022 and its causation. Guangdong Meteor, 2024, 46(1): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX202401005.htm [18] Wang H J, Xue F, Zhou G Q. The spring monsoon in South China and its relationship to Large-scale circulation features. Adv Atmos Sci, 2002, 19(4): 651-664. doi: 10.1007/s00376-002-0005-0 [19] 陈桢华, 宋怡恒, 马慧. 华南前汛期气温异常及其环流特征分析. 气象研究与应用, 2011, 32(3): 1-4. doi: 10.3969/j.issn.1673-8411.2011.03.001Chen Z H, Song Y H, Ma H. Temperature anomalies and circulation characteristics of pre-flood season in Southern China. J Meteor Res Appl, 2011, 32(3): 1-4. doi: 10.3969/j.issn.1673-8411.2011.03.001 [20] 程乘, 朱益民, 于斌, 等. 中国华南3月降水和大气环流的年代际转型及其与PDO的联系. 干旱气象, 2016, 34(6): 936-944. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201606003.htmCheng C, Zhu Y M, Yu B, et al. Interdecadal shift of March precipitation and atmospheric circulation in South China and their relationships with PDO. J Arid Meteor, 2016, 34(6): 936-944. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201606003.htm [21] 郑菲, 李建平. 前冬南半球环状模对春季华南降水的影响及其机理. 地球物理学报, 2012, 55(11): 3542-3557. doi: 10.6038/j.issn.0001-5733.2012.11.004Zheng F, Li J P. Impact of preceding boreal winter southern hemisphere annular mode on spring precipitation over South China and related mechanism. Chinese J Geophys, 2012, 55(11): 3542-3557. doi: 10.6038/j.issn.0001-5733.2012.11.004 [22] 章丽娜, 林鹏飞, 熊喆, 等. 热带大气季节内振荡对华南前汛期降水的影响. 大气科学, 2011, 35(3): 560-570. doi: 10.3878/j.issn.1006-9895.2011.03.15Zhang L N, Lin P F, Xiong Z, et al. Impact of the madden-Julian oscillation on pre-flood season precipitation in South China. Chinese J Atmos Sci, 2011, 35(3): 560-570. doi: 10.3878/j.issn.1006-9895.2011.03.15 [23] 李秀珍, 梁卫, 温之平. 华南秋、冬、春季水汽输送特征及其与降水异常的联系. 热带气象学报, 2010, 26(5): 626-632. doi: 10.3969/j.issn.1004-4965.2010.05.016Li X Z, Liang W, Wen Z P. Characteristics of the atmospheric water vapor and its relationship with rainfall in South China in northern autumn, winter and spring. J Trop Meteor, 2010, 26(5): 626-632. doi: 10.3969/j.issn.1004-4965.2010.05.016 [24] 吴尚森, 黄成昌, 薛惠娴. 华南气温变化与ENSO的关系. 热带气象, 1990, 6(1): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX199001007.htmWu S S, Huang C C, Xue H X. Relationship of ENSO to temperature variation in South China. J Trop Meteor, 1990, 6(1): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX199001007.htm [25] 陈丽娟, 王悦颖, 李维京, 等. 海温异常对中国汛期降水的影响及预测应用. 应用气象学报, 2024, 35(2): 129-141. doi: 10.11898/1001-7313.20240201Chen L J, Wang Y Y, Li W J, et al. Review of the influence and application of SST anomaly to flood season precipitation in China. J Appl Meteor Sci, 2024, 35(2): 129-141. doi: 10.11898/1001-7313.20240201 [26] 马慧, 陈桢华, 徐宁军, 等. 华南南部前汛期气温与阿拉伯海和孟加拉湾北部海温的关系. 高原气象, 2010, 29(6): 1507-1513. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201006017.htmMa H, Chen Z H, Xu N J, et al. Relationship between the preflood period tempreture in the south of South China and SST in Arabian Sea and north of Bay of Bengal. Plateau Meteor, 2010, 29(6): 1507-1513. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201006017.htm [27] 周明森, 简茂球, 乔云亭. 华南4—5月持续性干旱及其环流背景. 气象学报, 2013, 71(1): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201301006.htmZhou M S, Jian M Q, Qiao Y T. April-May persistent drought events in South China and the related general circulation background. Acta Meteor Sinica, 2013, 71(1): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201301006.htm [28] 黄刚, 胡开明, 屈侠, 等. 热带印度洋海温海盆一致模的变化规律及其对东亚夏季气候影响的回顾. 大气科学, 2016, 40(1): 121-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201601011.htmHuang G, Hu K M, Qu X, et al. A review about Indian Ocean basin mode and its impacts on East Asian summer climate. Chinese J Atmos Sci, 2016, 40(1): 121-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201601011.htm [29] 于怡秋. 各季节北大西洋海温三极子及其与我国气温年际变化的联系. 南京: 南京信息工程大学, 2020.Yu Y Q. The North Atlantic Sea Surface Temperature Tripole in all Seasons and Its Relationship with Interannual Variability of Temperature in China. Nanjing: Nanjing University of Information Science & Technology, 2020. [30] 梁静, 孙建奇, 洪海旭, 等. 春季北大西洋三极型海温模态与中国东部极端低温事件频次年际变化关系的年代际增强. 大气科学, 2023, 47(4): 1050-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202304021.htmLiang J, Sun J Q, Hong H X, et al. Interdecadal enhancement of the interannual variation relationship between spring North Atlantic tripolar sea surface temperature mode and extreme cold event frequency in Eastern China. Chinese J Atmos Sci, 2023, 47(4): 1050-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202304021.htm [31] Xu W S, Ma S M, Zhu C W. Enhanced subseasonal variability of spring temperature over Eastern China in 2022: Initial role of extremely heavy Arctic Sea ice in previous winter. Geophys Res Lett, 2023, 50(23). DOI: 10.1029/2023GL106017. [32] 国家气象信息中心. 中国地面月值数据. 气象大数据云平台, 2023, A. 0019.0001. S001. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202402026.htmNational Meteorological Information Center. Monthly Land Surface Data in China. Meteorological Big Data Cloud Platform, 2023, A. 0019.0001. S001. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202402026.htm [33] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteor Soc, 2020, 146(730): 1999-2049. [34] Chang P, Ji L, Li H. A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 1997, 385(6616): 516-518. [35] Torrence C, Compo G P. A practical guide to wavelet analysis. Bull Amer Meteor Soc, 1998, 79(1): 61-78. [36] Plumb R A. On the three-dimensional propagation of stationary waves. J Atmos Sci, 1985, 42(3): 217-229. [37] Hilt D E, Seegrist D W, States U. Ridge, a Computer Program for Calculating Ridge Regression Estimates. Upper Darby, Pa: Dept of Agriculture, Forest Service, Northeastern Forest Experiment Station, 1977. [38] Butterworth S. On the theory of filter amplifiers. Wireless Engineer, 1930, 7(6): 536-541. [39] Sorrentino R. Electronic Filter Simulation & Design. McGraw-Hill Professional, 2007. [40] 宋艳华, 杨伟民, 顾晓, 等. 1961—2008年广东省极端气温的时空变化特征. 广东气象, 2012, 34(6): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201206008.htmSong Y H, Yang W M, Gu X, et al. Temporal and spatial variation characteristics of extreme temperature in Guangdong Province from 1961 to 2008. Guangdong Meteor, 2012, 34(6): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201206008.htm [41] Zuo J Q, Li W J, Sun C H, et al. Impact of the North Atlantic Sea surface temperature tripole on the East Asian summer monsoon. Adv Atmos Sci, 2013, 30(4): 1173-1186. [42] Yuan Y, Yan H M. Different types of La Ni a events and different responses of the tropical atmosphere. Chinese Sci Bull, 2013, 58(3): 406-415. [43] Yang J L, Liu Q Y, Xie S P, et al. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett, 2007, 34(2): 1-5. [44] Xie S P, Hu K M, Hafner J, et al. Indian ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J Climate, 2009, 22(3): 730-747. [45] Hu K M, Huang G, Huang R H. The impact of tropical Indian Ocean variability on summer surface air temperature in China. J Climate, 2011, 24(20): 5365-5377. [46] 亢兴. 春季印度洋海温异常对东亚大气环流的影响. 青岛: 中国海洋大学, 2009.Kang X. The Impacts of Indian Ocean SSTA Interannual Variation on the Atmospheric Circulation in the East Asian. Qingdao: Ocean University of China, 2009. [47] 纪忠萍, 谷德军, 梁健, 等. 近55年影响广州的强冷空气及其准双周变化. 大气科学, 2007, 31(5): 999-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200705021.htmJi Z P, Gu D J, Liang J, et al. The strong cold air occurrences affecting Guangzhou and their biweekly oscillation during the last 55 years. Chinese J Atmos Sci, 2007, 31(5): 999-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200705021.htm [48] 仇永炎, 刘景秀. 寒潮中期预报研究成果简介. 气象学报, 1985, 43(2): 253. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198502015.htmQiu Y Y, Liu J X. Brief introduction to the research results of medium-term cold wave forecast. Acta Meteor Sinica, 1985, 43(2): 253. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198502015.htm [49] Lian Y, Shen B Z, Li S F, et al. Impacts of polar vortex, NPO, and SST configurations on unusually cool summers in Northeast China. Part Ⅰ: Analysis and diagnosis. Adv Atmos Sci, 2013, 30(1): 193-209. [50] 陈丽娟, 袁媛, 杨明珠, 等. 海温异常对东亚夏季风影响机理的研究进展. 应用气象学报, 2013, 24(5): 521-532. http://qikan.camscma.cn/article/id/20130502Chen L J, Yuan Y, Yang M Z, et al. A review of physical mechanisms of the global SSTA impact on EASM. J Appl Meteor Sci, 2013, 24(5): 521-532. http://qikan.camscma.cn/article/id/20130502 [51] 柯宗建, 华丽娟, 钟霖浩, 等. 海温异常对东亚夏季风强度先兆信号的影响. 应用气象学报, 2015, 26(5): 536-544. doi: 10.11898/1001-7313.20150503 Ke Z J, Hua L J, Zhong L H, et al. The influence of sea surface temperature anomaly on the East Asian summer monsoon strength and its precursor. J Appl Meteor Sci, 2015, 26(5): 536-544. doi: 10.11898/1001-7313.20150503 [52] 时晓曚, 孙即霖, 孙雅文, 等. 北大西洋秋季"三极子" 海温结构对冬季大气环流场的影响. 海洋学报, 2015, 37(7): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201507004.htmShi X M, Sun J L, Sun Y W, et al. The impact of the autumn Atlantic Sea surface temperature three-pole structure on winter atmospheric circulation. Haiyang Xuebao, 2015, 37(7): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201507004.htm [53] 王永光, 郑志海. 2017年汛期气候预测先兆信号的综合分析. 气象, 2018, 44(4): 565-571. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201804010.htmWang Y G, Zheng Z H. Precursory signal analysis of summer rainfall prediction in China in 2017. Meteor Mon, 2018, 44(4): 565-571. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201804010.htm [54] 王遵娅, 柳艳菊, 丁婷, 等. 2018年春季气候异常及可能成因分析. 气象, 2018, 44(10): 1360-1369. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201810013.htmWang Z Y, Liu Y J, Ding T, et al. Features and possible causes for the climate anomalies in spring 2018. Meteor Mon, 2018, 44(10): 1360-1369. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201810013.htm [55] 卢国阳, 林纾, 王蕊, 等. 西北地区4月降水异常的环流特征及前兆海温信号. 干旱区地理, 2021, 44(5): 1250-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202105006.htmLu G Y, Lin S, Wang R, et al. Anomalous circulation characteristics of precipitation anomalies in Northwest China in April and precursory SST signal. Arid Land Geogr, 2021, 44(5): 1250-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202105006.htm [56] 李栋梁, 蓝柳茹. 西伯利亚高压强度与北大西洋海温异常的关系. 大气科学学报, 2017, 40(1): 13-24. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201701002.htmLi D L, Lan L R. Relationship between the intensity of the Siberian High and the SST anomaly in the North Atlantic. Trans Atmos Sci, 2017, 40(1): 13-24. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201701002.htm [57] Hoerl A E, Kennard R W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 1970, 12(1): 55. [58] 谢舜, 孙效功, 张苏平, 等. 基于SVD与机器学习的华南降水预报订正方法. 应用气象学报, 2022, 33(3): 293-304. 10.11898/1001-7313.20220304 Xie S, Sun X G, Zhang S P, et al. Precipitation forecast correction in South China based on SVD and machine learning. J Appl Meteor Sci, 2022, 33(3): 293-304. 10.11898/1001-7313.20220304 [59] 刘甲毅, 邓丽姣, 傅国斌, 等. 两种统计降尺度方法在秦岭山地的适用性. 应用气象学报, 2018, 29(6): 737-747. doi: 10.11898/1001-7313.20180609 Liu J Y, Deng L J, Fu G B, et al. The applicability of two statistical downscaling methods to the Qinling Mountains. J Appl Meteor Sci, 2018, 29(6): 737-747. doi: 10.11898/1001-7313.20180609 [60] Rifkin R M, Lippert R A. Notes on Regularized Least Squares. Computer Science and Artificial Intelligence Laboratory Technical Report, 2007, 25: 268. [61] 范可, 林美静, 高煜中. 用年际增量方法预测华北汛期降水. 中国科学(地球科学), 2008, 38(11): 1452-1459. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200811014.htmFan K, Lin M J, Gao Y Z. Prediction of precipitation in flood season in North China by interannual increment method. Sci China(Earth Sci), 2008, 38(11): 1452-1459. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200811014.htm