Spectral Correction Impacts of Lightning from Tall Buildings on Channel Temperature Inversion
-
摘要: 雷电光谱强度因受到大气衰减特性、光栅响应特性以及相机光电响应特性等影响, 导致光谱定量分析中通道温度的反演存在误差。以1次高建筑物雷电回击光谱为例, 考虑相机和光栅的仪器响应对其进行校正, 对比校正前后的光谱结构和谱线强度, 并基于多谱线法利用1次电离的氮离子(NII)和中性氧原子(OI)谱线反演通道温度, 分析光谱校正对通道温度反演的影响。结果显示: 光谱校正后离子和中性原子谱线强度均明显增强, 尤其可见光区域的连续谱强度明显增强, 导致其谱线结构变化显著, 而近红外区域的谱线结构变化不显著。利用校正后可见光区域的NII谱线和近红外区域的OI谱线反演通道温度时, 线性拟合的决定系数均增大, 反演准确度均得到提升。NII和OI谱线反演的通道温度平均值相比校正前分别降低4660 K和上升1540 K, 且由OI谱线反演的通道温度低于由NII谱线反演的温度, 说明它们分别对应雷电放电通道径向的不同区域。Abstract: During the lightning spectral observation, the spectral intensity is significantly reduced due to instrumental factors and other factors. The spectral intensity attenuation significantly affects the accuracy of temperature calculations. Temperature, as a fundamental parameter, is inextricably linked to other parameters within the lightning discharge channel, and accurate determination of the plasma temperature is crucial for gaining insights into the dynamic and physical processes of the discharge. Up to now, there have been no detailed and definitive reports on the influence of instrumental response on tall building lightning spectroscopy and temperature diagnostics.Based on the spectral analysis of a lightning return stroke channel spectrum, the spectral is corrected by accounting for the instrumental response. Then, the spectral structure and line intensities before and after correction are compared and analyzed. Nitrogen ionized (NII) lines in the visible region and neutral oxygen (OI) lines in the near-infrared region are selected for temperature calculations using the multi-line method. The influence of spectral correction on the temperature analysis of the tall building lightning return stroke channel is investigated. Results show that after correction, the intensity of spectral lines is significantly enhanced. In particular, the spectral line structure in the visible region changes significantly, while the spectral line structure in the near-infrared region changes little. The continuum radiation in the visible region of the corrected tall building lightning spectrum is significantly enhanced, which is different from the results of natural cloud-to-ground lightning spectra after considering the instrumental response correction. Due to the significant enhancement of the continuum radiation intensity in the visible region resulting from the spectral correction, the continuum radiation intensity should be subtracted when using NII lines in the visible region to calculate the tall building lightning temperature. In this case, the coefficient of fitted line and the calculation accuracy increases, while the average temperature decreases by 4660 K compared to that before correction. Conversely, since the original continuum radiation intensity of tall building lightning spectra in the near-infrared region is relatively low, the spectral correction has little effect on the continuum spectrum intensity. Therefore, after spectral correction, when using OI lines in the near-infrared region to calculate the temperature, the determination coefficient of the linear fitting increases, resulting in improved fitting performance and an increase of 1540 K in the average temperature.
-
表 1 不同情况下利用NII和OI谱线计算的通道温度及其对应的拟合决定系数
Table 1 Lightning discharge channel temperature and corresponding determination coefficients with NII and OI lines under different conditions
通道高度/m 相机响应校正 光栅响应校正 NII谱线计算的温度/K NII谱线拟合决定系数 OI谱线计算的温度/K OI谱线拟合决定系数 140 否 否 44140 0.451 14370 0.950 140 是 否 41070 0.484 14200 0.984 140 是 是 41670 0.984 16240 0.991 690 否 否 31600 0.955 16680 0.910 690 是 否 27570 0.991 16990 0.948 690 是 是 31180 0.989 19270 0.999 1490 否 否 54500 0.630 19440 0.938 1490 是 否 42370 0.450 18910 0.991 1490 是 是 43410 0.968 19600 0.999 -
[1] 闫琳城, 张文娟, 张义军, 等. 南海雷暴大风时空分布及闪电和对流活动特征. 应用气象学报, 2023, 34(4): 503-512. doi: 10.11898/1001-7313.20230410 Yan L C, Zhang W J, Zhang Y J, et al. Temporal and spatial distribution of thunderstorms and strong winds with characteristics of lightning and convective activities in the South China Sea. J Appl Meteor Sci, 2023, 34(4): 503-512. doi: 10.11898/1001-7313.20230410 [2] 李莹, 王国复. 气象灾害风险管理系统设计与应用. 应用气象学报, 2022, 33(5): 628-640. doi: 10.11898/1001-7313.20220510Li Y, Wang G F. Design and implementation of Meteorological Disaster Risk Management System. J Appl Meteor Sci, 2022, 33(5): 628-640. doi: 10.11898/1001-7313.20220510 [3] Pickering E C. Spectrum of lightning. Astron Nachr, 1901, 157: 207. doi: 10.1002/asna.19011571205 [4] Fox P. The spectrum of lightning. Astrophys J, 1903, 18: 294-297. [5] Prueitt M L. The excitation temperature of lightning. J Geophys Res, 1963, 68(3): 803-811. doi: 10.1029/JZ068i003p00803 [6] Orville R E. A high-speed time-resolved spectroscopic study of the lightning return stroke: Part Ⅱ. A quantitative analysis. J Atmos Sci, 1968, 25(5): 839-851. doi: 10.1175/1520-0469(1968)025<0839:AHSTRS>2.0.CO;2 [7] Walker T D, Christian H J. Triggered lightning spectroscopy: 2. A quantitative analysis. J Geophys Res Atmos, 2019, 124(7): 3930-3942. doi: 10.1029/2018JD029901 [8] Chuang H. Uncertainties in the measurement of helium plasma temperature by the relative intensity method. Appl Opt, 1965, 4(12): 1589-1592. doi: 10.1364/AO.4.001589 [9] 欧阳玉花, 袁萍, 贾向东. 用多谱线法计算闪电通道等离子体温度. 西北师范大学学报(自然科学版), 2006, 42(3): 49-53. doi: 10.3969/j.issn.1001-988X.2006.03.014Ouyang Y H, Yuan P, Jia X D. Multiple-line method used to calculate lightning channel temperature. J Northwest Norm Univ Nat Sci, 2006, 42(3): 49-53. doi: 10.3969/j.issn.1001-988X.2006.03.014 [10] 穆亚利. 闪电回击通道温度的时间演化及径向分布特征. 兰州: 西北师范大学, 2016.Mu Y L. Temperature Distribution and Evolution Characteristic in Lightning Return Stroke Channel. Lanzhou: Northwest Normal University, 2016. [11] Cen J Y, Yuan P, Qu H Y, et al. Analysis on the spectra and synchronous radiated electric field observation of cloud-to-ground lightning discharge plasma. Phys Plasmas, 2011, 18(11). DOI: 10.1063/1.3541837. [12] Liu G R, Yuan P, An T T, et al. Using Saha-Boltzmann plot to diagnose lightning return stroke channel temperature. J Geophys Res Atmos, 2019, 124(8): 4689-4698. doi: 10.1029/2018JD028620 [13] 王雪娟, 许伟群, 化乐彦, 等. 闪电连续电流的光谱分析及通道温度特性研究. 光谱学与光谱分析, 2022, 42(7): 2069-2075. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202207012.htmWang X J, Xu W Q, Hua L Y, et al. Spectral analysis and study on the channel temperature of lightning continuing current process. Spectrosc Spectr Anal, 2022, 42(7): 2069-2075. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202207012.htm [14] 关雨侬, 吕伟涛, 齐奇, 等. 一次上行闪电中先导二维和三维发展特征的差异. 应用气象学报, 2023, 34(5): 598-607. doi: 10.11898/1001-7313.20230508 Guan Y N, Lü W T, Qi Q, et al. Difference between 2D and 3D development characteristics of an upward lightning leader. J Appl Meteor Sci, 2023, 34(5): 598-607. doi: 10.11898/1001-7313.20230508 [15] 武斌, 吕伟涛, 齐奇, 等. 双向先导正端突然延展现象的高速摄像观测. 应用气象学报, 2020, 31(2): 146-155. doi: 10.11898/1001-7313.20200202Wu B, Lü W T, Qi Q, et al. High-speed video observations on abrupt elongations of the positive end of bidirectional leader. J Appl Meteor Sci, 2020, 31(2): 146-155. doi: 10.11898/1001-7313.20200202 [16] Hegazy H. Oxygen spectral lines for diagnostics of atmospheric laser-induced plasmas. Appl Phys B, 2010, 98(2): 601-606. [17] Wan R, Yuan P, An T, et al. Effects of atmospheric attenuation on the lightning spectrum. J Geophys Res Atmos, 2021, 126(22). DOI: 10.1029/2021JD035387. [18] 许伟群, 吕伟涛, 齐奇, 等. 一次触发闪电金属汽化通道的亮度与电流特征. 应用气象学报, 2023, 34(6): 739-748. doi: 10.11898/1001-7313.20230609 Xu W Q, Lü W T, Qi Q, et al. Luminosity and current characteristics of metal-vaporized channel of an artificially triggered lightning. J Appl Meteor Sci, 2023, 34(6): 739-748. doi: 10.11898/1001-7313.20230609 [19] 张悦, 吕伟涛, 陈绿文, 等. 基于人工引雷的粤港澳闪电定位系统性能评估. 应用气象学报, 2022, 33(3): 329-340. doi: 10.11898/1001-7313.20220307 Zhang Y, Lü W T, Chen L W, et al. Evaluation of GHMLLS performance characteristics based on observations of artificially triggered lightning. J Appl Meteor Sci, 2022, 33(3): 329-340. doi: 10.11898/1001-7313.20220307 [20] 王雪娟, 王海通, 化乐彦, 等. 广州塔闪电光谱特性分析. 光学学报, 2023, 43(12): 343-353. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202312034.htmWang X J, Wang H T, Hua L Y, et al. Analysis on lightning spectral characteristics of Canton Tower. Acta Opt Sinica, 2023, 43(12): 343-353. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202312034.htm [21] Qie X S, Jiang R B, Wang C X, et al. Simultaneously measured current, luminosity, and electric field pulses in a rocket-triggered lightning flash. J Geophys Res, 2011, 116(D10). DOI: 10.1029/2010JD015331. [22] 王雪娟, 袁萍, 岑建勇, 等. 依据光谱研究闪电放电通道的半径及能量传输特性. 物理学报, 2013, 62(10): 486-493. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201310075.htmWang X J, Yuan P, Cen J Y, et al. Study on the radius and energy transmission properties of lightning discharge channel by the spectra. Acta Phys Sinica, 2013, 62(10): 486-493. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201310075.htm [23] Uman M, Orville R. The opacity of lightning. J Geophys Res, 1965, 70: 5491-5497. doi: 10.1029/JZ070i022p05491 [24] Uman M A. Determination of lightning temperature. J Geophys Res, 1969, 74(4): 949-957. doi: 10.1029/JB074i004p00949 [25] Wang X J, Wang H T, Lyu W T, et al. First experimental verification of opacity for the lightning near-infrared spectrum. Geophys Res Lett, 2022, 49(13). DOI: 10.1029/2022GL098883. [26] 邱德仁. 原子光谱分析. 上海: 复旦大学出版社, 2002.Qiu D R. Atomic Spectral Analysis. Shanghai: Fudan Press, 2002. [27] 吴姗姗, 吕伟涛, 齐奇, 等. 基于光学资料的广州塔附近下行地闪特征. 应用气象学报, 2019, 30(2): 203-210. doi: 10.11898/1001-7313.20190207 Wu S S, Lü W T, Qi Q, et al. Characteristics of downward cloud-to-ground lightning flashes around Canton Tower based on optical observations. J Appl Meteor Sci, 2019, 30(2): 203-210. doi: 10.11898/1001-7313.20190207 [28] 吕伟涛, 陈绿文, 马颖, 等. 广州高建筑物雷电观测与研究10年进展. 应用气象学报, 2020, 31(2): 129-145. doi: 10.11898/1001-7313.20200201 Lü W T, Chen L, Ma Y, et al. Advances of observation and study on tall-object lightning in Guangzhou over the last decade. J Appl Meteor Sci, 2020, 31(2): 129-145. doi: 10.11898/1001-7313.20200201 [29] 齐奇, 吕伟涛, 武斌, 等. 广州两座高建筑物上闪击距离的二维光学观测. 应用气象学报, 2020, 31(2): 156-164. doi: 10.11898/1001-7313.20200203 Qi Q, Lü W T, Wu B, et al. Two-dimensional optical observation of striking distance of lightning flashes to two buildings in Guangzhou. J Appl Meteor Sci, 2020, 31(2): 156-164. doi: 10.11898/1001-7313.20200203 [30] Zhao J C, Yuan P, Cen J Y, et al. Characteristics and applications of near-infrared emissions from lightning. J Appl Phys, 2013, 114(16). DOI: 10.1063/1.4827182. [31] Kieu N, Gordillo-Vázquez F J, Passas M, et al. Submicrosecond spectroscopy of lightning-like discharges: Exploring new time regimes. Geophys Res Lett, 2020, 47(15). DOI: 10.1029/2020GL088755. [32] Kieu N, Gordillo-Vázquez F J, Passas M, et al. High-speed spectroscopy of lightning-like discharges: Evidence of molecular optical emissions. J Geophys Res Atmos, 2021, 126(11). DOI: 10.1029/2021JD035016. [33] Boggs L D, Liu N Y, Nag A, et al. Vertical temperature profile of natural lightning return strokes derived from optical spectra. J Geophys Res Atmos, 2021, 126(8). DOI: 10.1029/2020JD034438. [34] Orville R E, Henderson R W. Absolute spectral irradiance measurements of lightning from 375 to 880 nm. J Atmos Sci, 1984, 41(21): 3180-3187. doi: 10.1175/1520-0469(1984)041<3180:ASIMOL>2.0.CO;2 [35] Weidman C, Boye A, Crowell L. Lightning spectra in the 850- to 1400-nm near-infrared region. J Geophys Res, 1989, 94(D11): 13249-13257. doi: 10.1029/JD094iD11p13249 [36] 王雪娟, 许伟群, 王海通, 等. 闪电M分量光谱特征及通道温度和电子密度特性. 物理学报, 2021, 70(9): 423-431. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202109042.htmWang X J, Xu W Q, Wang H T, et al. Spectral features, temperature and electron density properties of lightning M-component. Acta Phys Sinica, 2021, 70(9): 423-431. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202109042.htm [37] Wang X J, Yuan P, Cen J Y, et al. Correlation between the spectral features and electric field changes for natural lightning return stroke followed by continuing current with M-components. J Geophys Res Atmos, 2016, 121(14): 8615-8624. doi: 10.1002/2016JD025314