留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于探空的FY-4B/GIIRS温湿廓线检验和订正

金子琪 余贞寿 郝世峰 张红蕾 陆正奇 张树宪

金子琪, 余贞寿, 郝世峰, 等. 基于探空的FY-4B/GIIRS温湿廓线检验和订正. 应用气象学报, 2024, 35(5): 538-550. DOI:  10.11898/1001-7313.20240503..
引用本文: 金子琪, 余贞寿, 郝世峰, 等. 基于探空的FY-4B/GIIRS温湿廓线检验和订正. 应用气象学报, 2024, 35(5): 538-550. DOI:  10.11898/1001-7313.20240503.
Jin Ziqi, Yu Zhenshou, Hao Shifeng, et al. Validation and correction of FY-4B/GIIRS temperature and humidity profiles based on radiosonde data. J Appl Meteor Sci, 2024, 35(5): 538-550. DOI:   10.11898/1001-7313.20240503.
Citation: Jin Ziqi, Yu Zhenshou, Hao Shifeng, et al. Validation and correction of FY-4B/GIIRS temperature and humidity profiles based on radiosonde data. J Appl Meteor Sci, 2024, 35(5): 538-550. DOI:   10.11898/1001-7313.20240503.

基于探空的FY-4B/GIIRS温湿廓线检验和订正

DOI: 10.11898/1001-7313.20240503
资助项目: 

浙江省自然科学基金联合基金资助项目 LZJMZ23D050005

浙江省自然科学基金联合基金资助项目 LZJMZ23D050003

浙江省气象局科技计划项目 2023ZD14

浙江省气象局科技计划项目 2023QN07

详细信息
    通信作者:

    余贞寿, 邮箱: yuzhenshou@163.com

Validation and Correction of FY-4B/GIIRS Temperature and Humidity Profiles Based on Radiosonde Data

  • 摘要: 以探空资料为基准, 对2023年2月—2024年1月风云四号气象卫星B星(FY-4B)干涉式大气垂直探测仪(GIIRS)温湿廓线产品开展检验评估, 分析误差特征, 并利用概率密度匹配法(PDF方法)对云天温度廓线进行订正。结果表明: 晴天条件下温度平均偏差为-0.3~1 K, 均方根误差在2 K以内; 湿度平均偏差为0~1.3 g·kg-1, 均方根误差最大值位于近地层, 约为2.1 g·kg-1。云天条件下偏差增大, 平均偏差整体呈正值, 温度均方根误差为2.2~2.7 K, 湿度均方根误差最大值约为3 g·kg-1。12:00(世界时, 下同)近地层温度偏差较00:00有所增大; 晴天条件下, 12:00 400 hPa以下的湿度偏差大于00:00;云天条件下, 00:00 750~950 hPa的湿度偏差大于12:00。云天条件下温湿廓线系统性偏差明显, 与质控码为0的样本相比, 质控码为1的样本偏冷、偏干加剧, 且偏差分布更为离散, 温度偏差呈不对称的双峰分布。PDF方法可有效减小FY-4B/GIIRS温度廓线的系统性偏差, 订正后, 质控码为0和1的样本平均偏差分别由0.74 K和2.07 K下降至-0.03 K和0.01 K, 均方根误差分别由1.89 K和3.20 K减小至1.73 K和2.34 K。
  • 图  1  晴天和云天条件下FY-4B/GIIRS温度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 1  Deviation NCFAD for FY-4B/GIIRS temperature profile with vertical distribution of mean bias and root mean square error under clear sky and cloudy conditions

    图  1  晴天和云天条件下FY-4B/GIIRS温度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 1  Deviation NCFAD for FY-4B/GIIRS temperature profile with vertical distribution of mean bias and root mean square error under clear sky and cloudy conditions

    图  2  晴天和云天条件下FY-4B/GIIRS湿度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 2  Deviation NCFAD for FY-4B/GIIRS humidity profile with vertical distribution of mean bias and root mean square error under clear sky and cloudy conditions

    图  2  晴天和云天条件下FY-4B/GIIRS湿度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 2  Deviation NCFAD for FY-4B/GIIRS humidity profile with vertical distribution of mean bias and root mean square error under clear sky and cloudy conditions

    图  3  晴天条件下00:00和12:00 FY-4B/GIIRS温度廓线的偏差NCFAD以及平均偏差和方根误差垂直分布

    Fig. 3  Deviation NCFAD for FY-4B/GIIRS temperature profile at 0000 UTC and 1200 UTC with vertical distribution of mean bias and root mean square error under clear sky condition

    图  3  晴天条件下00:00和12:00 FY-4B/GIIRS温度廓线的偏差NCFAD以及平均偏差和方根误差垂直分布

    Fig. 3  Deviation NCFAD for FY-4B/GIIRS temperature profile at 0000 UTC and 1200 UTC with vertical distribution of mean bias and root mean square error under clear sky condition

    图  4  晴天条件下00:00和12:00 FY-4B/GIIRS湿度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 4  Deviation NCFAD for FY-4B/GIIRS humidity profile at 0000 UTC and 1200 UTC with vertical distribution of mean bias and root mean square error under clear sky condition

    图  4  晴天条件下00:00和12:00 FY-4B/GIIRS湿度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 4  Deviation NCFAD for FY-4B/GIIRS humidity profile at 0000 UTC and 1200 UTC with vertical distribution of mean bias and root mean square error under clear sky condition

    图  5  云天条件下00:00和12:00 FY-4B/GIIRS温度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 5  Deviation NCFAD for FY-4B/GIIRS temperature profile at 0000 UTC and 1200 UTC with vertical distribution of mean bias and root mean square error under cloudy condition

    图  5  云天条件下00:00和12:00 FY-4B/GIIRS温度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 5  Deviation NCFAD for FY-4B/GIIRS temperature profile at 0000 UTC and 1200 UTC with vertical distribution of mean bias and root mean square error under cloudy condition

    图  6  云天条件下00:00和12:00时次FY-4B/GIIRS湿度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 6  Deviation NCFAD for FY-4B/GIIRS humidity profile at 0000 UTC and 1200 UTC with vertical distribution of mean bias and root mean square error under cloudy condition

    图  6  云天条件下00:00和12:00时次FY-4B/GIIRS湿度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 6  Deviation NCFAD for FY-4B/GIIRS humidity profile at 0000 UTC and 1200 UTC with vertical distribution of mean bias and root mean square error under cloudy condition

    图  7  云天条件下不同质控码的FY-4B/GIIRS温度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 7  Deviation NCFAD for FY-4B/GIIRS temperature profile with different quality controls with vertical distribution of mean bias and root mean square error under cloudy condition

    图  7  云天条件下不同质控码的FY-4B/GIIRS温度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 7  Deviation NCFAD for FY-4B/GIIRS temperature profile with different quality controls with vertical distribution of mean bias and root mean square error under cloudy condition

    图  8  云天条件下不同质控码的FY-4B/GIIRS湿度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 8  Deviation NCFAD for FY-4B/GIIRS humidity profile with different quality controls with vertical distribution of mean bias and root mean square error under cloudy condition

    图  8  云天条件下不同质控码的FY-4B/GIIRS湿度廓线的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 8  Deviation NCFAD for FY-4B/GIIRS humidity profile with different quality controls with vertical distribution of mean bias and root mean square error under cloudy condition

    图  9  质控码为0的FY-4B/GIIRS温度廓线订正前后的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 9  Deviation NCFAD for FY-4B/GIIRS temperature profile with quality control of 0 with vertical distribution of mean bias and root mean squared error before and after correction

    图  9  质控码为0的FY-4B/GIIRS温度廓线订正前后的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 9  Deviation NCFAD for FY-4B/GIIRS temperature profile with quality control of 0 with vertical distribution of mean bias and root mean squared error before and after correction

    图  10  质控码为1的FY-4B/GIIRS温度廓线订正前后的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 10  Deviation NCFAD for FY-4B/GIIRS temperature profile with quality control of 1 with vertical distribution of mean bias and root mean square error before and after correction

    图  10  质控码为1的FY-4B/GIIRS温度廓线订正前后的偏差NCFAD以及平均偏差和均方根误差垂直分布

    Fig. 10  Deviation NCFAD for FY-4B/GIIRS temperature profile with quality control of 1 with vertical distribution of mean bias and root mean square error before and after correction

    图  11  不同质控码FY-4B/GIIRS温度样本订正前后与探空散点分布

    Fig. 11  Scatter plots of FY-4B/GIIRS temperature with different quality controls before and after correction to radiosonde data

    图  11  不同质控码FY-4B/GIIRS温度样本订正前后与探空散点分布

    Fig. 11  Scatter plots of FY-4B/GIIRS temperature with different quality controls before and after correction to radiosonde data

    表  1  不同质量样本占总样本量的百分比(单位:%)

    Table  1  Percentage of samples with different quality to the total samples (unit: %)

    要素 天气条件 样本量占比
    质控码为0 质控码为1 质控码为2 质控码为3 无效值
    温度 晴天 60.38 10.97 6.17 14.03 8.46
    云天 19.79 13.03 9.57 26.32 31.29
    湿度 晴天 91.54 0.00 0.00 0.00 8.46
    云天 53.64 4.88 3.28 6.99 31.21
    下载: 导出CSV

    表  1  不同质量样本占总样本量的百分比(单位:%)

    Table  1  Percentage of samples with different quality to the total samples (unit: %)

    要素 天气条件 样本量占比
    质控码为0 质控码为1 质控码为2 质控码为3 无效值
    温度 晴天 60.38 10.97 6.17 14.03 8.46
    云天 19.79 13.03 9.57 26.32 31.29
    湿度 晴天 91.54 0.00 0.00 0.00 8.46
    云天 53.64 4.88 3.28 6.99 31.21
    下载: 导出CSV
  • [1] 周冰雪, 朱朗峰, 吴昊, 等. 微波辐射计反演大气廓线精度及降水预报应用. 应用气象学报, 2023, 34(6): 717-728. doi:  10.11898/1001-7313.20230607

    Zhou B X, Zhu L F, Wu H, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. doi:  10.11898/1001-7313.20230607
    [2] 官元红, 任杰, 鲍艳松, 等. 基于一维变分算法的红外高光谱(IASI)卫星遥感大气温湿廓线研究. 大气科学学报, 2019, 42(4): 602-611.

    Guan Y H, Ren J, Bao Y S, et al. Research of the infrared high spectral(IASI) satellite remote sensing atmospheric temperature and humidity profiles based on the one-dimensional variational algorithm. Trans Atmos Sci, 2019, 42(4): 602-611.
    [3] 胡姮, 曹云昌, 梁宏. L波段探空观测偏差分析及订正算法研究. 气象, 2019, 45(4): 511-521.

    Hu H, Cao Y C, Liang H. Systematic errors and their calibrations for precipitable water vapor of L-band radiosonde. Meteor Mon, 2019, 45(4): 511-521.
    [4] 周雪松, 郭启云, 夏元彩, 等. 基于往返式平漂探空的FY-3D卫星反演温度检验. 应用气象学报, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105

    Zhou X S, Guo Q Y, Xia Y C, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105
    [5] 廖蜜, 张鹏, 刘健, 等. 风云卫星的掩星干大气温度廓线精准度特征. 应用气象学报, 2023, 34(3): 270-281. doi:  10.11898/1001-7313.20230302

    Liao M, Zhang P, Liu J, et al. Accuracy and stability of radio occultation dry temperature profiles from Fengyun satellites. J Appl Meteor Sci, 2023, 34(3): 270-281. doi:  10.11898/1001-7313.20230302
    [6] 张云开, 徐娜, 翟晓春, 等. 一种基于静止卫星的海面风矢量估测方法. 应用气象学报, 2024, 35(2): 225-236. doi:  10.11898/1001-7313.20240208

    Zhang Y K, Xu N, Zhai X C, et al. A method to estimate sea surface wind vectors using geostationary satellites. J Appl Meteor Sci, 2024, 35(2): 225-236. doi:  10.11898/1001-7313.20240208
    [7] 崔鹏, 王素娟, 陆风, 等. FY-4A/AGRI海表温度产品和质量检验. 应用气象学报, 2023, 34(3): 257-269. doi:  10.11898/1001-7313.20230301

    Cui P, Wang S J, Lu F, et al. FY-4A/AGRI sea surface temperature product and quality validation. J Appl Meteor Sci, 2023, 34(3): 257-269. doi:  10.11898/1001-7313.20230301
    [8] 赵渊明, 孙静, 漆梁波, 等. 基于L波段探空观测的FY-4A云顶温度产品评估及其在冬季降水相态判识中的应用. 气象, 2024, 50(1): 59-70. doi:  10.3969/j.issn.2095-1973.2024.01.009

    Zhao Y M, Sun J, Qi L B, et al. Evaluation of FY-4A cloud top temperature product based on L-band radiosonde data and its application in winter precipitation type identification. Meteor Mon, 2024, 50(1): 59-70. doi:  10.3969/j.issn.2095-1973.2024.01.009
    [9] Yang J, Zhang Z Q, Wei C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull Amer Meteor Soc, 2017, 98(8): 1637-1658. doi:  10.1175/BAMS-D-16-0065.1
    [10] 周爱明. 基于风云四号高光谱红外模拟资料反演大气温湿廓线试验研究. 南京: 南京信息工程大学, 2017.

    Zhou A M. Atmospheric Temperature and Humidity Profiles Retrieval from Hyperspectral Infrared Simulation Data Based on FY-4. Nanjing: Nanjing University of Information Science & Technology, 2017.
    [11] Ren S L, Jiang J Y, Fang X, et al. FY-4A/GⅡRS temperature validation in winter and application to cold wave monitoring. J Meteor Res, 2022, 36(4): 658-676. doi:  10.1007/s13351-022-2015-4
    [12] 杜明斌, 崔林丽, 陆风, 等. FY-4A/GⅡRS大气温度廓线产品质量评估. 红外与毫米波学报, 2023, 42(3): 399-409.

    Du M B, Cui L L, Lu F, et al. Quality evaluation of FY-4A/GⅡRS atmospheric temperature profile. J Infrared Millim Waves, 2023, 42(3): 399-409.
    [13] 黄艺伟, 刘琼, 何敏, 等. 基于探空资料的上海台风季GⅡRS/FY-4A卫星温度廓线反演精度研究. 红外, 2019, 40(9): 28-38.

    Huang Y W, Liu Q, He M, et al. Research on inversion precision of temperature-profile of GⅡRS/FY-4A satellite in Shanghai typhoon season based on radiosonde data. Infrared, 2019, 40(9): 28-38.
    [14] Gao Y, Mao D Y, Wang X, et al. Evaluation of FY-4A temperature profile products and application to winter precipitation type diagnosis in southern China. Remote Sens, 2022, 14(10). DOI:  10.3390/rs14102363.
    [15] 覃皓, 黄明策, 农孟松, 等. 基于FY-4A温湿廓线的强对流过程探空检验及应用分析. 气象科技, 2023, 51(1): 1-13.

    Qin H, Huang M C, Nong M S, et al. Comparative verification of sounding data of strong convective processes based on FY-4A temperature and humidity profiles. Meteor Sci Technol, 2023, 51(1): 1-13.
    [16] 王洪, 周后福, 王琛, 等. 基于微波辐射计和探空的FY-4A温度廓线检验. 应用气象学报, 2023, 34(3): 295-308. doi:  10.11898/1001-7313.20230304

    Wang H, Zhou H F, Wang C, et al. Accuracy validation of FY-4A temperature profile based on microwave radiometer and radiosonde. J Appl Meteor Sci, 2023, 34(3): 295-308. doi:  10.11898/1001-7313.20230304
    [17] Ma Y F, Liu J J, Mamtimin A, et al. Validation of FY-4A temperature profiles by radiosonde observations in Taklimakan Desert in China. Remote Sens, 2023, 15(11). DOI:  10.3390/rs15112925.
    [18] Wang S F, Lu F, Feng Y T. An investigation of the Fengyun-4A/B GⅡRS performance on temperature and humidity retrievals. Atmosphere, 2022, 13(11). DOI:  1.3390/atmos13111830.
    [19] Yang W Y, Chen Y D, Bai W G, et al. Evaluation of temperature and humidity profiles retrieved from Fengyun-4B and implications for typhoon assimilation and forecasting. Remote Sens, 2023, 15(22). DOI:  10.3390/rs15225339.
    [20] 宇婧婧, 沈艳, 潘旸, 等. 概率密度匹配法对中国区域卫星降水资料的改进. 应用气象学报, 2013, 24(5): 544-553. doi:  10.3969/j.issn.1001-7313.2013.05.004

    Yu J J, Shen Y, Pan Y, et al. Improvement of satellite-based precipitation estimates over China based on probability density function matching method. J Appl Meteor Sci, 2013, 24(5): 544-553. doi:  10.3969/j.issn.1001-7313.2013.05.004
    [21] 周林, 潘婕, 张镭, 等. 概率调整法在气候模式模拟降水量订正中的应用. 应用气象学报, 2014, 25(3): 302-311. doi:  10.3969/j.issn.1001-7313.2014.03.007

    Zhou L, Pan J, Zhang L, et al. Correction based on distribution scaling for precipitation simulated by climate model. J Appl Meteor Sci, 2014, 25(3): 302-311. doi:  10.3969/j.issn.1001-7313.2014.03.007
    [22] Wang W Q, Xie P P. A multiplatform-merged(MPM) SST analysis. J Climate, 2007, 20(9): 1662-1679. doi:  10.1175/JCLI4097.1
    [23] 胡海川, 赵伟, 董林. 概率密度匹配方法在我国近海海面10 m风速预报中的应用. 热带气象学报, 2021, 37(1): 91-101.

    Hu H C, Zhao W, Dong L. Application of probability density function matching in the offshore 10 m wind speed forecasting in China. J Trop Meteor, 2021, 37(1): 91-101.
    [24] 徐丽娜, 申彦波, 李忠, 等. FY-4A SSI产品在辐射观测稀疏位置的偏差订正方案. 高原气象, 2022, 41(4): 1051-1061.

    Xu L N, Shen Y B, Li Z, et al. Deviation correction scheme of FY-4A SSI product in the position of sparse radiation observations. Plateau Meteor, 2022, 41(4): 1051-1061.
    [25] 郭雪星, 瞿建华, 叶凌梦, 等. 基于朴素贝叶斯的FY-4A/AGRI云检测方法. 应用气象学报, 2023, 34(3): 282-294. doi:  10.11898/1001-7313.20230303

    Guo X X, Qu J H, Ye L M, et al. FY-4A/AGRI cloud detection method based on naive Bayesian algorithm. J Appl Meteor Sci, 2023, 34(3): 282-294. doi:  10.11898/1001-7313.20230303
    [26] Min M, Wu C Q, Li C, et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J Meteor Res, 2017, 31(4): 708-719. doi:  10.1007/s13351-017-6161-z
    [27] Seidel D J, Sun B M, Pettey M, et al. Global radiosonde balloon drift statistics. J Geophys Res Atmos, 2011, 116(D7). DOI:  10.1029/2010JD014891.
    [28] 刘欢, 郭建平, 陈田萌, 等. 全球热带海洋地区降水季节变化的TRMM卫星观测. 科学通报, 2017, 62(1): 90-104.

    Liu H, Guo J P, Chen T M, et al. On the seasonal variation of various types of precipitation over global tropical ocean region: A perspective from TRMM measurements. Chinese Sci Bull, 2017, 62(1): 90-104.
    [29] 李俊, 杜钧, 陈超君. 降水偏差订正的频率(或面积)匹配方法介绍和分析. 气象, 2014, 40(5): 580-588.

    Li J, Du J, Chen C J. Introduction and analysis to frequency or area matching method applied to precipitation forecast bias correction. Meteor Mon, 2014, 40(5): 580-588.
  • 加载中
图(22) / 表(2)
计量
  • 摘要浏览量:  272
  • HTML全文浏览量:  56
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-28
  • 修回日期:  2024-07-03
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回