Validation and Correction of FY-4B/GIIRS Temperature and Humidity Profiles Based on Radiosonde Data
-
摘要: 以探空资料为基准, 对2023年2月—2024年1月风云四号气象卫星B星(FY-4B)干涉式大气垂直探测仪(GIIRS)温湿廓线产品开展检验评估, 分析误差特征, 并利用概率密度匹配法(PDF方法)对云天温度廓线进行订正。结果表明: 晴天条件下温度平均偏差为-0.3~1 K, 均方根误差在2 K以内; 湿度平均偏差为0~1.3 g·kg-1, 均方根误差最大值位于近地层, 约为2.1 g·kg-1。云天条件下偏差增大, 平均偏差整体呈正值, 温度均方根误差为2.2~2.7 K, 湿度均方根误差最大值约为3 g·kg-1。12:00(世界时, 下同)近地层温度偏差较00:00有所增大; 晴天条件下, 12:00 400 hPa以下的湿度偏差大于00:00;云天条件下, 00:00 750~950 hPa的湿度偏差大于12:00。云天条件下温湿廓线系统性偏差明显, 与质控码为0的样本相比, 质控码为1的样本偏冷、偏干加剧, 且偏差分布更为离散, 温度偏差呈不对称的双峰分布。PDF方法可有效减小FY-4B/GIIRS温度廓线的系统性偏差, 订正后, 质控码为0和1的样本平均偏差分别由0.74 K和2.07 K下降至-0.03 K和0.01 K, 均方根误差分别由1.89 K和3.20 K减小至1.73 K和2.34 K。
-
关键词:
- FY-4B/GIIRS;
- 探空资料;
- 温湿廓线;
- 检验评估;
- 概率密度匹配法
Abstract: In order to promote applications of FY-4B satellite data, temperature and humidity profile products of FY-4B geostationary interferometric infrared sounder (GIIRS) are verified and evaluated from February 2023 to January 2024 based on radiosonde data. Deviation characteristics are compared and analyzed under different conditions. In addition, the probability density function (PDF) matching method is employed to correct systematic errors in FY-4B/GIIRS temperature profile under cloudy condition. Results indicate that the quality of FY-4B/GIIRS temperature and humidity profiles is significantly influenced by cloud activity, leading to a notable reduction in the proportion of high-quality data when affected by the cloud. Under clear sky condition, the mean bias (MB) of temperature profiles ranges from -0.3 K to 1 K, the root mean square error (RMSE) is within 2 K, and the minimum error is approximately 1.1 K near 400 hPa height. The MB of humidity profiles ranges from 0 to 1.3 g·kg-1, and the maximum RMSE is about 2.1 g·kg-1 at the surface layer. Temperature and humidity profile errors increase under cloudy condition, while the bias of entire atmospheric layer is predominantly positive. The RMSE of temperature ranges from 2.2 K to 2.7 K, while the maximum RMSE for humidity is approximately 3 g·kg-1. The trend of errors is consistently similar at 0000 UTC and 1200 UTC. Compared with 0000 UTC, the deviation of temperature profiles at the surface layer at 1200 UTC is larger and slightly more distinct. The humidity error at 1200 UTC is greater than that at 0000 UTC at the layer below 400 hPa under clear sky condition, while the humidity error at 0000 UTC is greater than that at 1200 UTC at layer between 750 hPa and 950 hPa under cloudy condition. Significant systematic errors exist in temperature and humidity profiles under cloudy condition. Samples with quality control of 1 tend to be colder and drier compared to those with quality control of 0. The deviation distribution is more discrete, while the deviation of temperature follows an asymmetric bimodal distribution. After correction using the PDF method, systematic errors of FY-4B/GIIRS temperature profiles are effectively reduced. MBs of samples with quality control of 0 and 1 decrease from 0.74 K and 2.07 K to 0.03 K and 0.01 K, and RMSEs decrease from 1.89 K and 3.20 K to 1.73 K and 2.34 K, respectively. When the deviation is generally unbiased, the effectiveness of PDF methods is limited. -
表 1 不同质量样本占总样本量的百分比(单位:%)
Table 1 Percentage of samples with different quality to the total samples (unit: %)
要素 天气条件 样本量占比 质控码为0 质控码为1 质控码为2 质控码为3 无效值 温度 晴天 60.38 10.97 6.17 14.03 8.46 云天 19.79 13.03 9.57 26.32 31.29 湿度 晴天 91.54 0.00 0.00 0.00 8.46 云天 53.64 4.88 3.28 6.99 31.21 表 1 不同质量样本占总样本量的百分比(单位:%)
Table 1 Percentage of samples with different quality to the total samples (unit: %)
要素 天气条件 样本量占比 质控码为0 质控码为1 质控码为2 质控码为3 无效值 温度 晴天 60.38 10.97 6.17 14.03 8.46 云天 19.79 13.03 9.57 26.32 31.29 湿度 晴天 91.54 0.00 0.00 0.00 8.46 云天 53.64 4.88 3.28 6.99 31.21 -
[1] 周冰雪, 朱朗峰, 吴昊, 等. 微波辐射计反演大气廓线精度及降水预报应用. 应用气象学报, 2023, 34(6): 717-728. doi: 10.11898/1001-7313.20230607Zhou B X, Zhu L F, Wu H, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. doi: 10.11898/1001-7313.20230607 [2] 官元红, 任杰, 鲍艳松, 等. 基于一维变分算法的红外高光谱(IASI)卫星遥感大气温湿廓线研究. 大气科学学报, 2019, 42(4): 602-611.Guan Y H, Ren J, Bao Y S, et al. Research of the infrared high spectral(IASI) satellite remote sensing atmospheric temperature and humidity profiles based on the one-dimensional variational algorithm. Trans Atmos Sci, 2019, 42(4): 602-611. [3] 胡姮, 曹云昌, 梁宏. L波段探空观测偏差分析及订正算法研究. 气象, 2019, 45(4): 511-521.Hu H, Cao Y C, Liang H. Systematic errors and their calibrations for precipitable water vapor of L-band radiosonde. Meteor Mon, 2019, 45(4): 511-521. [4] 周雪松, 郭启云, 夏元彩, 等. 基于往返式平漂探空的FY-3D卫星反演温度检验. 应用气象学报, 2023, 34(1): 52-64. doi: 10.11898/1001-7313.20230105Zhou X S, Guo Q Y, Xia Y C, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. doi: 10.11898/1001-7313.20230105 [5] 廖蜜, 张鹏, 刘健, 等. 风云卫星的掩星干大气温度廓线精准度特征. 应用气象学报, 2023, 34(3): 270-281. doi: 10.11898/1001-7313.20230302Liao M, Zhang P, Liu J, et al. Accuracy and stability of radio occultation dry temperature profiles from Fengyun satellites. J Appl Meteor Sci, 2023, 34(3): 270-281. doi: 10.11898/1001-7313.20230302 [6] 张云开, 徐娜, 翟晓春, 等. 一种基于静止卫星的海面风矢量估测方法. 应用气象学报, 2024, 35(2): 225-236. doi: 10.11898/1001-7313.20240208Zhang Y K, Xu N, Zhai X C, et al. A method to estimate sea surface wind vectors using geostationary satellites. J Appl Meteor Sci, 2024, 35(2): 225-236. doi: 10.11898/1001-7313.20240208 [7] 崔鹏, 王素娟, 陆风, 等. FY-4A/AGRI海表温度产品和质量检验. 应用气象学报, 2023, 34(3): 257-269. doi: 10.11898/1001-7313.20230301Cui P, Wang S J, Lu F, et al. FY-4A/AGRI sea surface temperature product and quality validation. J Appl Meteor Sci, 2023, 34(3): 257-269. doi: 10.11898/1001-7313.20230301 [8] 赵渊明, 孙静, 漆梁波, 等. 基于L波段探空观测的FY-4A云顶温度产品评估及其在冬季降水相态判识中的应用. 气象, 2024, 50(1): 59-70. doi: 10.3969/j.issn.2095-1973.2024.01.009Zhao Y M, Sun J, Qi L B, et al. Evaluation of FY-4A cloud top temperature product based on L-band radiosonde data and its application in winter precipitation type identification. Meteor Mon, 2024, 50(1): 59-70. doi: 10.3969/j.issn.2095-1973.2024.01.009 [9] Yang J, Zhang Z Q, Wei C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull Amer Meteor Soc, 2017, 98(8): 1637-1658. doi: 10.1175/BAMS-D-16-0065.1 [10] 周爱明. 基于风云四号高光谱红外模拟资料反演大气温湿廓线试验研究. 南京: 南京信息工程大学, 2017.Zhou A M. Atmospheric Temperature and Humidity Profiles Retrieval from Hyperspectral Infrared Simulation Data Based on FY-4. Nanjing: Nanjing University of Information Science & Technology, 2017. [11] Ren S L, Jiang J Y, Fang X, et al. FY-4A/GⅡRS temperature validation in winter and application to cold wave monitoring. J Meteor Res, 2022, 36(4): 658-676. doi: 10.1007/s13351-022-2015-4 [12] 杜明斌, 崔林丽, 陆风, 等. FY-4A/GⅡRS大气温度廓线产品质量评估. 红外与毫米波学报, 2023, 42(3): 399-409.Du M B, Cui L L, Lu F, et al. Quality evaluation of FY-4A/GⅡRS atmospheric temperature profile. J Infrared Millim Waves, 2023, 42(3): 399-409. [13] 黄艺伟, 刘琼, 何敏, 等. 基于探空资料的上海台风季GⅡRS/FY-4A卫星温度廓线反演精度研究. 红外, 2019, 40(9): 28-38.Huang Y W, Liu Q, He M, et al. Research on inversion precision of temperature-profile of GⅡRS/FY-4A satellite in Shanghai typhoon season based on radiosonde data. Infrared, 2019, 40(9): 28-38. [14] Gao Y, Mao D Y, Wang X, et al. Evaluation of FY-4A temperature profile products and application to winter precipitation type diagnosis in southern China. Remote Sens, 2022, 14(10). DOI: 10.3390/rs14102363. [15] 覃皓, 黄明策, 农孟松, 等. 基于FY-4A温湿廓线的强对流过程探空检验及应用分析. 气象科技, 2023, 51(1): 1-13.Qin H, Huang M C, Nong M S, et al. Comparative verification of sounding data of strong convective processes based on FY-4A temperature and humidity profiles. Meteor Sci Technol, 2023, 51(1): 1-13. [16] 王洪, 周后福, 王琛, 等. 基于微波辐射计和探空的FY-4A温度廓线检验. 应用气象学报, 2023, 34(3): 295-308. doi: 10.11898/1001-7313.20230304Wang H, Zhou H F, Wang C, et al. Accuracy validation of FY-4A temperature profile based on microwave radiometer and radiosonde. J Appl Meteor Sci, 2023, 34(3): 295-308. doi: 10.11898/1001-7313.20230304 [17] Ma Y F, Liu J J, Mamtimin A, et al. Validation of FY-4A temperature profiles by radiosonde observations in Taklimakan Desert in China. Remote Sens, 2023, 15(11). DOI: 10.3390/rs15112925. [18] Wang S F, Lu F, Feng Y T. An investigation of the Fengyun-4A/B GⅡRS performance on temperature and humidity retrievals. Atmosphere, 2022, 13(11). DOI: 1.3390/atmos13111830. [19] Yang W Y, Chen Y D, Bai W G, et al. Evaluation of temperature and humidity profiles retrieved from Fengyun-4B and implications for typhoon assimilation and forecasting. Remote Sens, 2023, 15(22). DOI: 10.3390/rs15225339. [20] 宇婧婧, 沈艳, 潘旸, 等. 概率密度匹配法对中国区域卫星降水资料的改进. 应用气象学报, 2013, 24(5): 544-553. doi: 10.3969/j.issn.1001-7313.2013.05.004Yu J J, Shen Y, Pan Y, et al. Improvement of satellite-based precipitation estimates over China based on probability density function matching method. J Appl Meteor Sci, 2013, 24(5): 544-553. doi: 10.3969/j.issn.1001-7313.2013.05.004 [21] 周林, 潘婕, 张镭, 等. 概率调整法在气候模式模拟降水量订正中的应用. 应用气象学报, 2014, 25(3): 302-311. doi: 10.3969/j.issn.1001-7313.2014.03.007Zhou L, Pan J, Zhang L, et al. Correction based on distribution scaling for precipitation simulated by climate model. J Appl Meteor Sci, 2014, 25(3): 302-311. doi: 10.3969/j.issn.1001-7313.2014.03.007 [22] Wang W Q, Xie P P. A multiplatform-merged(MPM) SST analysis. J Climate, 2007, 20(9): 1662-1679. doi: 10.1175/JCLI4097.1 [23] 胡海川, 赵伟, 董林. 概率密度匹配方法在我国近海海面10 m风速预报中的应用. 热带气象学报, 2021, 37(1): 91-101.Hu H C, Zhao W, Dong L. Application of probability density function matching in the offshore 10 m wind speed forecasting in China. J Trop Meteor, 2021, 37(1): 91-101. [24] 徐丽娜, 申彦波, 李忠, 等. FY-4A SSI产品在辐射观测稀疏位置的偏差订正方案. 高原气象, 2022, 41(4): 1051-1061.Xu L N, Shen Y B, Li Z, et al. Deviation correction scheme of FY-4A SSI product in the position of sparse radiation observations. Plateau Meteor, 2022, 41(4): 1051-1061. [25] 郭雪星, 瞿建华, 叶凌梦, 等. 基于朴素贝叶斯的FY-4A/AGRI云检测方法. 应用气象学报, 2023, 34(3): 282-294. doi: 10.11898/1001-7313.20230303Guo X X, Qu J H, Ye L M, et al. FY-4A/AGRI cloud detection method based on naive Bayesian algorithm. J Appl Meteor Sci, 2023, 34(3): 282-294. doi: 10.11898/1001-7313.20230303 [26] Min M, Wu C Q, Li C, et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J Meteor Res, 2017, 31(4): 708-719. doi: 10.1007/s13351-017-6161-z [27] Seidel D J, Sun B M, Pettey M, et al. Global radiosonde balloon drift statistics. J Geophys Res Atmos, 2011, 116(D7). DOI: 10.1029/2010JD014891. [28] 刘欢, 郭建平, 陈田萌, 等. 全球热带海洋地区降水季节变化的TRMM卫星观测. 科学通报, 2017, 62(1): 90-104.Liu H, Guo J P, Chen T M, et al. On the seasonal variation of various types of precipitation over global tropical ocean region: A perspective from TRMM measurements. Chinese Sci Bull, 2017, 62(1): 90-104. [29] 李俊, 杜钧, 陈超君. 降水偏差订正的频率(或面积)匹配方法介绍和分析. 气象, 2014, 40(5): 580-588.Li J, Du J, Chen C J. Introduction and analysis to frequency or area matching method applied to precipitation forecast bias correction. Meteor Mon, 2014, 40(5): 580-588.