留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极端持续性强降水过程雷达偏振量特征及演变

冯晋勤 潘佳文 何清芳 赖巧珍

冯晋勤, 潘佳文, 何清芳, 等. 极端持续性强降水过程雷达偏振量特征及演变. 应用气象学报, 2024, 35(5): 577-589. DOI:  10.11898/1001-7313.20240506..
引用本文: 冯晋勤, 潘佳文, 何清芳, 等. 极端持续性强降水过程雷达偏振量特征及演变. 应用气象学报, 2024, 35(5): 577-589. DOI:  10.11898/1001-7313.20240506.
Feng Jinqin, Pan Jiawen, He Qingfang, et al. Characteristics and evolution of radar polarization during extremely persistent heavy rainfall. J Appl Meteor Sci, 2024, 35(5): 577-589. DOI:  10.11898/1001-7313.20240506.
Citation: Feng Jinqin, Pan Jiawen, He Qingfang, et al. Characteristics and evolution of radar polarization during extremely persistent heavy rainfall. J Appl Meteor Sci, 2024, 35(5): 577-589. DOI:  10.11898/1001-7313.20240506.

极端持续性强降水过程雷达偏振量特征及演变

DOI: 10.11898/1001-7313.20240506
资助项目: 

福建省自然科学基金项目 2019J01099

福建省自然科学基金项目 2020J0111

福建省自然科学基金项目 2021J01450

福建省自然科学基金项目 2023J01185

详细信息
    通信作者:

    冯晋勤, 邮箱:lyfjq@hotmail.com

Characteristics and Evolution of Radar Polarization During Extremely Persistent Heavy Rainfall

  • 摘要: 为研究极端持续性强降水过程的中尺度结构和云物理特征, 利用龙岩S波段双偏振雷达、雨滴谱仪、二维闪电定位仪等多源资料结合雷达风场反演方法, 分析2022年5月26—27日福建一次极端持续性强降水过程。结果表明:该过程水汽充沛, 不稳定能量适中, 有利于产生强降水。强降水期间不低于45 dBZ的强回波主要集中在西南向喇叭口地形收缩处的山脉迎风坡一侧。强回波在气流辐合处持续发展, 前两个阶段暴雨区西侧回波持续移入形成后向传播的列车效应;第3阶段强回波在东北风引导下向东偏南移动。该过程以海洋性对流降水和暖云降水为主, 强降水主要由高浓度小尺度的雨滴粒子造成。第2阶段强烈上升运动在0 ℃层以上形成霰粒子, 并与冰晶碰撞, 产生负闪, 冰相过程使霰粒子下落融化与低层雨滴的碰并增长形成大雨滴, 降水效率高。降水粒子集中在气流汇合处, 中低层存在高浓度雨滴粒子。差分反射率大值区多分布在中层上升气流处, 大雨滴在下落过程中破碎为小雨滴, 进一步加大雨滴粒子数。
  • 图  1  观测仪器分布及地形

    Fig. 1  Distribution of observation instruments and terrain height

    图  1  观测仪器分布及地形

    Fig. 1  Distribution of observation instruments and terrain height

    图  2  年5月26日21:00—27日07:00降水量

    Fig. 2  Rainfall from 2100 BT 26 May to 0700 BT 27 May in 2022

    图  2  年5月26日21:00—27日07:00降水量

    Fig. 2  Rainfall from 2100 BT 26 May to 0700 BT 27 May in 2022

    图  3  年5月26日21:00—27日07:00十方站逐5 min降水量(柱状) 和1 h滑动累积降水量(实线) (a)与整点逐时降水量(b)

    Fig. 3  Rainfall in 5 min (the bar) with 1 h moving accumulated rainfall (the line) (a) and hourly rainfall(b) at Shifang Station from 2100 BT 26 May to 0700 BT 27 May in 2022

    图  3  年5月26日21:00—27日07:00十方站逐5 min降水量(柱状) 和1 h滑动累积降水量(实线) (a)与整点逐时降水量(b)

    Fig. 3  Rainfall in 5 min (the bar) with 1 h moving accumulated rainfall (the line) (a) and hourly rainfall(b) at Shifang Station from 2100 BT 26 May to 0700 BT 27 May in 2022

    图  4  年5月26—27日龙岩雷达组合反射率因子演变(线段AB和线段CD为图 5剖面位置,线段EF为图 6图 10剖面位置)

    Fig. 4  Evolution of composite reflectivity of Longyan Radar from 26 May to 27 May in 2022 (line AB and line CD denote positions of vertical profile of Fig. 5 and line EF denote positions of vertical profile in Fig. 6 and Fig. 10)

    图  4  年5月26—27日龙岩雷达组合反射率因子演变(线段AB和线段CD为图 5剖面位置,线段EF为图 6图 10剖面位置)

    Fig. 4  Evolution of composite reflectivity of Longyan Radar from 26 May to 27 May in 2022 (line AB and line CD denote positions of vertical profile of Fig. 5 and line EF denote positions of vertical profile in Fig. 6 and Fig. 10)

    图  5  年5月26日22:00—27日03:00沿图 4线段AB和线段CD的龙岩雷达组合反射率因子时间-距离哈默图

    Fig. 5  Time-distance Hovmölller diagrams of composite reflectivity along line AB and line CD in Fig. 4 of Longyan Radar from 2200 BT 26 May to 0300 BT 27 May in 2022

    图  5  年5月26日22:00—27日03:00沿图 4线段AB和线段CD的龙岩雷达组合反射率因子时间-距离哈默图

    Fig. 5  Time-distance Hovmölller diagrams of composite reflectivity along line AB and line CD in Fig. 4 of Longyan Radar from 2200 BT 26 May to 0300 BT 27 May in 2022

    图  6  年5月26—27日ZH, ZDRKDP沿图 4线段EF的垂直剖面

    Fig. 6  Sections of ZH, ZDR and KDP from 26 May to 27 May in 2022 along line EF in Fig. 4

    图  6  年5月26—27日ZH, ZDRKDP沿图 4线段EF的垂直剖面

    Fig. 6  Sections of ZH, ZDR and KDP from 26 May to 27 May in 2022 along line EF in Fig. 4

    图  7  年5月27日上杭站和武平站雨滴谱

    Fig. 7  Raindrop spectrum of Shanghang Station and Wuping Station on 27 May 2022

    图  7  年5月27日上杭站和武平站雨滴谱

    Fig. 7  Raindrop spectrum of Shanghang Station and Wuping Station on 27 May 2022

    图  8  年5月27日00:00—03:00闪电频次和强度变化

    Fig. 8  Flash frequency and intensity from 0000 BT to 0300 BT on 27 May 2022

    图  8  年5月27日00:00—03:00闪电频次和强度变化

    Fig. 8  Flash frequency and intensity from 0000 BT to 0300 BT on 27 May 2022

    图  9  年5月26—27日3.5 km高度ZH, ZDRKDP (填色) 与风场(矢量)

    Fig. 9  ZH, ZDR and KDP (the shaded) and wind field (the vector) at 3.5 km altitude from 26 May to 27 May in 2022

    图  9  年5月26—27日3.5 km高度ZH, ZDRKDP (填色) 与风场(矢量)

    Fig. 9  ZH, ZDR and KDP (the shaded) and wind field (the vector) at 3.5 km altitude from 26 May to 27 May in 2022

    图  10  年5月26—27日沿图 4线段EF的ZH, ZDR, KDP (填色) 和风场(矢量) 的垂直剖面图

    Fig. 10  Sections of ZH, ZDR and KDP (the shaded) and wind field (the vector) along line EF in Fig. 4 from 26 May to 27 May in 2022

    图  10  年5月26—27日沿图 4线段EF的ZH, ZDR, KDP (填色) 和风场(矢量) 的垂直剖面图

    Fig. 10  Sections of ZH, ZDR and KDP (the shaded) and wind field (the vector) along line EF in Fig. 4 from 26 May to 27 May in 2022

  • [1] 李建,宇如聪,孙溦.从小时尺度考察中国中东部极端降水的持续性和季节特征.气象学报,2013,71(4):652-659.

    Li J, Yu R C, Sun W. Duration and seasonality of the hourly extreme rainfall in the central-eastern part of China. Acta Meteor Sinica, 2013, 71(4): 652-659.
    [2] Wu M W, Luo Y L, Chen F, et al. Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J Appl Meteor Climatol, 2019, 58(8): 1799-1819. doi:  10.1175/JAMC-D-18-0284.1
    [3] 齐道日娜, 何立富, 王秀明, 等. "7·20" 河南极端暴雨精细观测及热动力成因. 应用气象学报, 2022, 33(1): 1-15.

    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15.
    [4] 齐铎, 王承伟, 白雪梅, 等. "23·8" 黑龙江极端强降水过程特征与成因. 应用气象学报, 2024, 35(3): 257-271.

    Qi D, Wang C W, Bai X M, et al. Characteristics and causes of extreme heavy rainfall in Heilongjiang Province during August 2023. J Appl Meteor Sci, 2024, 35(3): 257-271.
    [5] 王婧羽, 李哲, 汪小康, 等. 河南省雨季短时强降水时空分布特征. 暴雨灾害, 2019, 38(2): 152-160.

    Wang J Y, Li Z, Wang X K, et al. Temporal and spatial distribution characteristics of flash heavy rain in Henan during rainy season. Torrential Rain Disasters, 2019, 38(2): 152-160.
    [6] 唐永兰, 徐桂荣, 万蓉. 2020年主汛期长江流域短时强降水时空分布特征. 大气科学学报, 2022, 45(2): 212-224.

    Tang Y L, Xu G R, Wan R. Temporal and spatial distribution characteristics of short-duration heavy rainfall in the Yangtze River Basin during the main flood season of 2020. Trans Atmos Sci, 2022, 45(2): 212-224.
    [7] 赵海军, 潘玲, 毛子卿. 山东省持续性短时强降水过程物理量特征分析. 海洋气象学报, 2023, 43(1): 63-74.

    Zhao H J, Pan L, Mao Z Q. Analysis on characteristics of physical quantity of persistent short-time severe rainfall in Shandong. J Mar Meteor, 2023, 43(1): 63-74.
    [8] Zhang C, Huang X G, Fei J F, et al. Spatiotemporal characteristics and associated synoptic patterns of extremely persistent heavy rainfall in Southern China. J Geophys Res Atmos, 2021, 126(1). DOI:  10.1029/2022JD033253.
    [9] Liu H S, Huang X G, Fei J F, et al. Spatiotemporal features and associated synoptic patterns of extremely persistent heavy rainfall over China. J Geophys Res Atmos, 2022, 127(15). DOI:  10.1029/2022JD036604.
    [10] 刘菲凡, 郑永光, 罗琪, 等. 京津冀及周边一般性降水与短时强降水特征对比. 应用气象学报, 2023, 34(5): 619-629.

    Liu F F, Zheng Y G, Luo Q, et al. Comparison of characteristics of light precipitation and short-time heavy precipitation over Beijing, Tianjin, Hebei and neighbouring areas. J Appl Meteor Sci, 2023, 34(5): 619-629.
    [11] 刁秀广, 李芳, 万夫敬. 两次强冰雹超级单体风暴双偏振特征对比. 应用气象学报, 2022, 33(4): 414-428.

    Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428.
    [12] 胡雅君, 张伟, 赵玉春, 等. "5·7" 闽南沿海暖区特大暴雨中尺度特征分析. 气象, 2020, 46(5): 629-642.

    Hu Y J, Zhang W, Zhao Y C, et al. Mesoscale feature analysis on a warm-sector torrential rain event in southeastern coast of Fujian on 7 May 2018. Meteor Mon, 2020, 46(5): 629-642.
    [13] 郭飞燕, 刁秀广, 褚颖佳, 等. 弱垂直风切变环境下强下击暴流双偏振雷达特征. 应用气象学报, 2023, 34(6): 681-693.

    Guo F Y, Diao X G, Chu Y J, et al. Dual polarization radar characteristics of severe downburst occurred in weak vertical wind shear. J Appl Meteor Sci, 2023, 34(6): 681-693.
    [14] 潘佳文, 彭婕, 魏鸣, 等. 副热带高压背景下极端短时强降水的双偏振相控阵雷达观测分析. 气象学报, 2022, 80(5): 748-764.

    Pan J W, Peng J, Wei M, et al. Analysis of an extreme flash rain event under the background of subtropical high based on dual-polarization phased array radar observations. Acta Meteor Sinica, 2022, 80(5): 748-764.
    [15] 孙跃, 任刚, 孙鸿娉, 等. 一次高炮防雹的相控阵双偏振雷达观测特征. 应用气象学报, 2023, 34(1): 65-77.

    Sun Y, Ren G, Sun H P, et al. Features of phased-array dual polarization radar observation during an anti-aircraft gun hail suppression operation. J Appl Meteor Sci, 2023, 34(1): 65-77.
    [16] 陈训来, 徐婷, 王蕊, 等. 珠江三角洲"9·7" 极端暴雨精细观测特征及成因. 应用气象学报, 2024, 35(1): 1-16.

    Chen X L, Xu T, Wang R, et al. Fine observation characteristics and causes of "9·7" extreme heavy rainstorm over Pearl River Delta, China. J Appl Meteor Sci, 2024, 35(1): 1-16.
    [17] 冯晋勤, 张深寿, 吴陈锋, 等. 双偏振雷达产品在福建强对流天气过程中的应用分析. 气象, 2018, 44(12): 1565-1574.

    Feng J Q, Zhang S S, Wu C F, et al. Application of dual polarization weather radar products to severe convective weather in Fujian. Meteor Mon, 2018, 44(12): 1565-1574.
    [18] 刘泽, 郭凤霞, 郑栋, 等. 一次暖云强降水主导的对流单体闪电活动特征. 应用气象学报, 2020, 31(2): 185-196.

    Liu Z, Guo F X, Zheng D, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196.
    [19] 罗昌荣, 孙照渤, 魏鸣, 等. 单多普勒雷达反演热带气旋近中心风场的VAP扩展应用方法. 气象学报, 2011, 69(1): 170-180.

    Luo C R, Sun Z B, Wei M, et al. An extended application of the VAP method for wind field retrieval near the tropical cyclone center with single-Doppler radar data. Acta Meteor Sinica, 2011, 69(1): 170-180.
    [20] Doswell C A, Brooks H E, Maddox R A. Flash flood forecasting: An ingredients-based methodology. Wea Forecasting, 1996, 11(4): 560-581.
    [21] 张沛源, 陈荣林. 多普勒速度图上的暴雨判据研究. 应用气象学报, 1995, 6(3): 373-378.

    Zhang P Y, Chen R L. A study of heavy rain signature recognition by radar velocity images. J Appl Meteor Sci, 1995, 6(3): 373-378.
    [22] 俞小鼎. 短时强降水临近预报的思路与方法. 暴雨灾害, 2013, 32(3): 202-209.

    Yu X D. Nowcasting thinking and method of flash heavy rain. Torrential Rain Disasters, 2013, 32(3): 202-209.
    [23] Ryzhkov A V, Zhuravlyov V B, Rybakova N A. Preliminary results of X-band polarization radar studies of clouds and precipitation. J Atmos Oceanic Technol, 1994, 11(1): 132-139.
    [24] Mattos E V, Machado L A T, Williams E R, et al. Electrification life cycle of incipient thunderstorms. J Geophys Res Atmos, 2017, 122(8): 4670-4697.
    [25] 王坤, 王啸华, 夏昕, 等. 2019年7月17日江苏东南部特大暴雨的双偏振雷达观测分析. 气象科学, 2022, 42(5): 610-621.

    Wang K, Wang X H, Xia X, et al. Microphysical characteristics of the extremely heavy rainstorm observed by Jiangsu polarimetric radars network in southeastern Jiangsu on July 17, 2019. J Meteor Sci, 2022, 42(5): 610-621.
    [26] Snyder J C, Bluestein H B, Dawson D T, et al. Simulations of polarimetric, X-band radar signatures in supercells. Part Ⅱ: ZDR columns and rings and KDP columns. J Appl Meteor Climatol, 2017, 56(7): 2001-2026.
    [27] Jung C J, Jou B J D. Bulk microphysical characteristics of a heavy-rain complex thunderstorm system in the Taipei Basin. Mon Wea Rev, 2023, 151(4): 877-896.
    [28] Wen L, Zhao K, Zhang G F, et al. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. J Geophys Res Atmos, 2016, 121(5): 2265-2282.
    [29] 杨忠林, 赵坤, 徐坤, 等. 江淮梅雨期极端对流微物理特征的双偏振雷达观测研究. 气象学报, 2019, 77(1): 58-72.

    Yang Z L, Zhao K, Xu K, et al. Microphysical characteristics of extreme convective precipitation over the Yangtze-Huaihe River Basin during the Meiyu season based on polarimetric radar data. Acta Meteor Sinica, 2019, 77(1): 58-72.
    [30] Williams E R, Weber M E, Orville R E. The relationship between lightning type and convective state of thunderclouds. J Geophys Res, 1989, 94(D11): 13213-13220.
    [31] 肖辉, 王孝波, 周非非, 等. 强降水云物理过程的三维数值模拟研究. 大气科学, 2004, 28(3): 385-404.

    Xiao H, Wang X B, Zhou F F, et al. A three-dimensional numerical simulation on microphysical processes of torrential rainstorms. Chinese J Atmos Sci, 2004, 28(3): 385-404.
  • 加载中
图(20)
计量
  • 摘要浏览量:  94
  • HTML全文浏览量:  17
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-19
  • 修回日期:  2024-07-23
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回