Remote Sensing Study on Blue-sky Days in Beijing, Tianjin, and Hebei During the Period of 2000-2023
-
摘要: 利用2000年12月—2023年12月卫星遥感反演的气溶胶光学厚度逐日资料, 结合2023年每日中午地面观测蓝天资料, 基于气溶胶光学厚度得到的蓝天等级监测指标, 分析2000—2023年京津冀地区蓝天日数的时空变化特征及其变化趋势。结果表明:2001—2023年京津冀蓝天日数年平均值分别为144.2 d·a-1、96.3 d·a-1和119.6 d·a-1, 北京蓝天日数最多, 河北次之, 天津最少。空间分布上, 河北北部年平均蓝天日数最多, 河北南部蓝天日数最少。京津冀蓝天日数具有明显季节变化, 冬季和秋季蓝天日数最多, 春季次之, 夏季最少。2001—2023年京津冀蓝天日数年平均值均呈显著增加趋势, 每10年分别增加18.1 d、22.3 d和16.3 d, 其中2001—2013年无显著趋势变化, 2013—2023年呈增加趋势, 每10年分别增加26.9 d、46.5 d和36.4 d。Abstract:
Blue sky often represents better air quality and lower air pollution. Using satellite aerosol optical depth (AOD) data of Beijing, Tianjin and Hebei Province from 2000 to 2023, combined with the blue-sky data observed at noon time in 2023, a blue-sky grade index is established based on satellite AOD, in which the monitoring index of blue-sky grade is the AOD at 550 nm less than 0.36, and that of deep blue-sky grade is the AOD at 550 nm less than 0.2.Spatial and temporal characteristics of blue-sky grade days in Beijing-Tianjin-Hebei Region from 2000 to 2023 are investigated. Results show that the multi-year average blue-sky days in Beijing, Tianjin, and Hebei are 144.2 d·a-1, 96.3 d·a-1, and 119.6 d·a-1, respectively, with the highest number of blue-sky days for Beijing, followed by Hebei and the lowest number is recorded in Tianjin. In terms of spatial distribution, the northern part of Hebei has the highest annual average of blue-sky days, while the southern part of Hebei has the lowest number of blue-sky days. The number of blue-sky days in Beijing-Tianjin-Hebei exhibits noticeable seasonal changes, with the highest number of blue-sky days in winter and autumn, followed by spring, and the lowest in summer.From 2001 to 2023, the average annual number of clear-sky days in Beijing, Tianjin, and Hebei takes on an increasing trend, with an increase of 18.1 d, 22.3 d and 16.3 d per decade, respectively. There is no significant trend change from 2001 to 2013. However, the annual average blue-sky days in Beijing-Tianjin-Hebei from 2013 to 2023 all show increasing trends, with increments of 26.9 d, 46.5 d, and 36.4 d per decade, respectively. The annual average blue-sky days and deep blue-sky days in Beijing-Tianjin-Hebei from 2013 to 2023 are higher than those in 2001-2013, with the annual average blue-sky days in Beijing, Tianjin, and Hebei of 153.5 d, 107.5 d, and 128.5 d, respectively, which are 17.5 d, 21.8 d, and 16.9 d higher than those in 2001-2013. It may be largely due to the implementation of regional air pollution prevention and control measures, which have led to a reduction in atmospheric particulate matter concentration since 2013.
-
表 1 北京、天津和河北2001—2023年、2001—2013年和2013—2023年全年和季节的蓝天日数趋势率(单位:d·a-1)
Table 1 Sen slope (unit:d·a-1) of numbers of annual and seasonal blue-sky days for Beijing, Tianjin and Hebei during 2001-2023, 2001-2013 and 2013-2023
时段 2001—2023年 2001—2013年 2013—2023年 北京 天津 河北 北京 天津 河北 北京 天津 河北 全年 1.81** 2.23** 1.63** 1.67 0.189 0.62 2.69* 4.65** 3.64* 冬季 0.71 0.95* 0.67 0.81 0.07 0.63 1.59 2.46* 1.93 春季 0.39 0.33 0.36 -0.06 -0.07 -0.06 0.48 0.40 0.80 夏季 0.55** 0.49** 0.42** 0.53 0.14 0.34 0.45 1.05 0.73 秋季 0.16 0.29 0.28 0.19 0.16 -0.07 1.29 1.49* 1.24* 注:* *表示趋势率达到0.01水平的MK显著性检验,*表示达到0.05水平的MK显著性检验。 表 1 北京、天津和河北2001—2023年、2001—2013年和2013—2023年全年和季节的蓝天日数趋势率(单位:d·a-1)
Table 1 Sen slope (unit:d·a-1) of numbers of annual and seasonal blue-sky days for Beijing, Tianjin and Hebei during 2001-2023, 2001-2013 and 2013-2023
时段 2001—2023年 2001—2013年 2013—2023年 北京 天津 河北 北京 天津 河北 北京 天津 河北 全年 1.81** 2.23** 1.63** 1.67 0.189 0.62 2.69* 4.65** 3.64* 冬季 0.71 0.95* 0.67 0.81 0.07 0.63 1.59 2.46* 1.93 春季 0.39 0.33 0.36 -0.06 -0.07 -0.06 0.48 0.40 0.80 夏季 0.55** 0.49** 0.42** 0.53 0.14 0.34 0.45 1.05 0.73 秋季 0.16 0.29 0.28 0.19 0.16 -0.07 1.29 1.49* 1.24* 注:* *表示趋势率达到0.01水平的MK显著性检验,*表示达到0.05水平的MK显著性检验。 -
[1] 颜鹏,刘桂清,周秀骥,等.上甸子秋冬季雾霾期间气溶胶光学特性.应用气象学报,2010,21(3):257-265. doi: 10.3969/j.issn.1001-7313.2010.03.001Yan P, Liu G Q, Zhou X J, et al. Characteristics of aerosol optical properties during haze and fog episodes at Shangdianzi in northern China. J Appl Meteor Sci, 2010, 21(3): 257-265. doi: 10.3969/j.issn.1001-7313.2010.03.001 [2] 梁苑新, 车慧正, 王宏, 等. 北京一次污染过程气溶胶光学特性及辐射效应. 应用气象学报, 2020, 31(5): 583-594.Liang Y X, Che H Z, Wang H, et al. Aerosol optical properties and radiative effects during a pollution epitode in Beijing. J Appl Meteor Sci, 2020, 31(5): 583-594. [3] 白春礼. 中国科学院大气灰霾追因与控制研究进展. 中国科学院院刊, 2017, 32(3): 215-218.Bai C L. Research progress on formation mechanism and control strategies of haze in Chinese academy of sciences. Bull Chinese Acad Sci, 2017, 32(3): 215-218. [4] 燕丽, 雷宇, 张伟. 我国区域大气污染防治协作历程与展望. 中国环境管理, 2021, 13(5): 61-68.Yan L, Lei Y, Zhang W. Progress and prospect of regional air pollution prevention and control cooperation in China. Chinese J Environ Manag, 2021, 13(5): 61-68. [5] 王兰英, 王磊, 张望. 过去十年我国大气污染防治科技工作进展及未来展望. 气候与环境研究, 2022, 27(6): 787-794.Wang L Y, Wang L, Zhang W. Science and technology progress on air pollution prevention and control in recent ten years and future prospect in China. Clim Environ Res, 2022, 27(6): 787-794. [6] 王文兴, 柴发合, 任阵海, 等. 新中国成立70年来我国大气污染防治历程、成就与经验. 环境科学研究, 2019, 32(10): 1621-1635.Wang W X, Chai F H, Ren Z H, et al. Process, achievements and experience of air pollution control in China since the founding of the People's Republic of China 70 years ago. Res Environ Sci, 2019, 32(10): 1621-1635. [7] 毛节泰, 王强, 赵柏林. 大气透明度光谱和浑浊度的观测. 气象学报, 1983, 41(3): 322-332.Mao J T, Wang Q, Zhao B L. The observation of the atmospheric transparency spectrum and the turbidity. Acta Meteor Sinica, 1983, 41(3): 322-332. [8] 盛裴轩. 大气物理学(第2版). 北京: 北京大学出版社, 2013.Sheng P X. Atmospheric Physics(the 2nd Ed). Beijing: Peking University Press, 2013. [9] 张晓春, 颜鹏, 高丽娜, 等. 霾的观测识别. 国家标准GB/T 36542—2018. 北京: 中国标准出版社, 2022.Zhang X C, Yan P, Gao L N, et al. Haze Identification for Meteorological Observation. National Standard GB/T 36542-2018. Beijing: China Standard Publishing House, 2022. [10] 牛若芸, 田翠英, 张恒德, 等. 沙尘天气等级. 国家标准GB/T 20480—2017. 北京: 中国标准出版社, 2017.Niu R Y, Tian C Y, Zhang H D, et al. Classification of Sand and Dust Weather. National Standard GB/T 20480-2017. Beijing: China Standard Publishing House, 2017. [11] 毛节泰, 李成才. 气溶胶辐射特性的观测研究. 气象学报, 2005, 63(5): 622-635. doi: 10.3321/j.issn:0577-6619.2005.05.008Mao J T, Li C C. Observation study of aerosol radiative properties over China. Acta Meteor Sinica, 2005, 63(5): 622-635. doi: 10.3321/j.issn:0577-6619.2005.05.008 [12] 范学花, 陈洪滨, 夏祥鳌. 中国大气气溶胶辐射特性参数的观测与研究进展. 大气科学, 2013, 37(2): 477-498.Fan X H, Chen H B, Xia X A. Progress in observation studies of atmospheric aerosol radiative properties in China. Chinese J Atmos Sci, 2013, 37(2): 477-498. [13] 李婉, 赵胡笳, 王昌双, 等. 2003—2022年东北地区气溶胶光学厚度变化特征. 应用气象学报, 2024, 35(2): 211-224.Li W, Zhao H J, Wang C S, et al. Variation characteristics of aerosol optical depth in Northeast China from 2003 to 2022. J Appl Meteor Sci, 2024, 35(2): 211-224. [14] 高玲, 张兴赢, 吴荣华, 等. 卫星遥感监测技术导则霾. 国家标准GB/T 42190—2022. 北京: 中国标准出版社, 2022.Gao L, Zhang X Y, Wu R H, et al. Technical Guidelines for Satellite Monitoring-Haze. National Standard GB/T 42190-2022. Beijing: China Standard Publishing House, 2022. [15] 郭一土, 夏楠, 周子钰, 等. 基于MCD19-A2数据和GWR模型的2011—2020年中国大气PM2.5质量浓度反演. 农业工程学报, 2023, 39(5): 184-191.Guo Y T, Xia N, Zhou Z Y, et al. Inversion of atmospheric PM2.5 mass concentration in China from 2011 to 2020 using MCD19-A2 data and GWR model. Transactions of the CSAE, 2023, 39(5): 184-191. [16] 李成才, 毛节泰, 刘启汉, 等. 利用MODIS光学厚度遥感产品研究北京及周边地区的大气污染. 大气科学, 2003, 27(5): 869-880. doi: 10.3878/j.issn.1006-9895.2003.05.08Li C C, Mao J T, Liu Q H, et al. Research on the air pollution in Beijing and its surroundings with MODIS AOD products. Chinese J Atmos Sci, 2003, 27(5): 869-880. doi: 10.3878/j.issn.1006-9895.2003.05.08 [17] 唐维尧, 鲍艳松, 张兴赢, 等. FY-3A/MERSI、MODIS C5.1和C6气溶胶光学厚度产品在中国区域与地面观测站点的对比分析. 气象学报, 2018, 76(3): 449-460.Tang W Y, Bao Y S, Zhang X Y, et al. Comparison of FY-3A/MERSI, MODIS C5.1, C6 and AERONET aerosol optical depth in China. Acta Meteor Sinica, 2018, 76(3): 449-460. [18] 叶昊天, 邹春辉, 田宏伟. 一种基于机器学习和葵花8号数据的PM2.5浓度监测方法. 气象与环境科学, 2023, 46(3): 89-97.Ye H T, Zou C H, Tian H W. A method for PM2.5 concentration monitoring based on machine learning and Himawari-8 satellite data. Meteor Environ Sci, 2023, 46(3): 89-97. [19] 苗蕾, 廖晓农, 王迎春. 基于长时间序列的北京PM2.5浓度日变化及气象条件影响分析. 环境科学, 2016, 37(8): 2836-2846.Miao L, Liao X N, Wang Y C. Diurnal variation of PM2.5 mass concentration in Beijing and influence of meteorological factors based on long term date. Environ Sci, 2016, 37(8): 2836-2846. [20] Lyapustin A, Wang Y J, Korkin S, et al. MODIS collection 6 MAIAC algorithm. Atmos Meas Technol, 2018, 11(10): 5741-5765. doi: 10.5194/amt-11-5741-2018 [21] Martins V S, Lyapustin A, de Carvalho L A S, et al. Validation of high-resolution MAIAC aerosol product over South America. J Geophys Res Atmos, 2017, 122(14): 7537-7559. doi: 10.1002/2016JD026301 [22] Zhang Z Y, Wu W L, Fan M, et al. Evaluation of MAIAC aerosol retrievals over China. Atmos Environ, 2019, 202: 8-16. doi: 10.1016/j.atmosenv.2019.01.013 [23] Sen P K. Estimates of the regression coefficient based on Kendall's tau. J Am Stat Assoc, 1968, 63(324): 1379-1389. doi: 10.1080/01621459.1968.10480934 [24] Mann H B. Nonparametric tests against trend. Econometrica, 1945, 13(3): 245-259. doi: 10.2307/1907187 [25] 符传博, 丹利, 冯锦明, 等. 1960—2012年中国地区总云量时空变化及其与气温和水汽的关系. 大气科学, 2019, 43(1): 87-98.Fu C B, Dan L, Feng J M, et al. Temporal and spatial variations of total cloud amount and their possible relationships with temperature and water vapor over China during 1960 to 2012. Chinese J Atmos Sci, 2019, 43(1): 87-98. [26] 晏利斌, 刘晓东. 京津冀地区气溶胶季节变化及与云量的关系. 环境科学研究, 2009, 22(8): 924-931.Yan L B, Liu X D. Seasonal variation of atmospheric aerosol and its relation to cloud faction over Beijing-Tianjin-Hebei Region. Res Environ Sci, 2009, 22(8): 924-931. [27] 宿兴涛, 冯静, 安豪, 等. 2015—2021年京津冀典型城市PM2.5和O3污染趋势变化分析. 大气科学, 2023, 47(5): 1641-1653.Su X T, Feng J, An H, et al. Trends analysis of fine particulate matter and ozone pollution in typical cities in the Beijing-Tianjin-Hebei Region during 2015-2021. Chinese J Atmos Sci, 2023, 47(5): 1641-1653. [28] 延昊, 矫梅燕, 赵琳娜, 等. 中国北方气溶胶散射和PM10浓度特征. 高原气象, 2008, 27(4): 852-858.Yan H, Jiao M Y, Zhao L N, et al. Characteristics of aerosol light-scattering and PM10 concentration in North China. Plateau Meteor, 2008, 27(4): 852-858. [29] 刘菲凡, 郑永光, 罗琪, 等. 京津冀及周边一般性降水与短时强降水特征对比. 应用气象学报, 2023, 34(5): 619-629.Liu F F, Zheng Y G, Luo Q, et al. Comparison of characteristics of light precipitation and short-time heavy precipitation over Beijing, Tianjin, Hebei and neighbouring areas. J Appl Meteor Sci, 2023, 34(5): 619-629. [30] 吴啸天, 王晓妍, 郑栋, 等. 不同类型气溶胶对长三角地区地闪活动影响. 应用气象学报, 2023, 34(5): 608-618.Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. [31] 周青, 李柏, 张勇, 等. 基于北京多源资料的云宏观特征判识. 应用气象学报, 2023, 34(2): 206-219.Zhou Q, Li B, Zhang Y, et al. Identification on cloud macroscopic physical characteristics based upon multi-source observations in Beijing. J Appl Meteor Sci, 2023, 34(2): 206-219. [32] 刘冬韡, 穆海振, 贺千山, 等. 一种基于实景图像的低能见度识别算法. 应用气象学报, 2022, 33(4): 501-512.Liu D W, Mu H Z, He Q S, et al. A low visibility recognition algorithm based on surveillance video. J Appl Meteor Sci, 2022, 33(4): 501-512. [33] 齐道日娜, 何立富. 2022年我国夏季极端高温阶段性特征及成因. 应用气象学报, 2023, 34(4): 385-399.Chyi D, He L F. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J Appl Meteor Sci, 2023, 34(4): 385-399. [34] 杨先逸, 车慧正, 陈权亮, 等. 天空辐射计观测反演北京城区气溶胶光学特性. 应用气象学报, 2020, 31(3): 373-384.Yang X Y, Che H Z, Chen Q L, et al. Retrieval of aerosol optical properties by skyradiometer over urban Beijing. J Appl Meteor Sci, 2020, 31(3): 373-384.