留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同播期对玉米先玉335产量和品质的影响

宋艳玲 周广胜 郭建平 潘亚茹 杨孟娇 田靳峰 李香雪 孟祥祎 兰惠婷 蒋玮光 隋丹 周灵妤 史俊辰 聂畅 满意

宋艳玲, 周广胜, 郭建平, 等. 不同播期对玉米先玉335产量和品质的影响. 应用气象学报, 2024, 35(5): 619-628. DOI:  10.11898/1001-7313.20240509..
引用本文: 宋艳玲, 周广胜, 郭建平, 等. 不同播期对玉米先玉335产量和品质的影响. 应用气象学报, 2024, 35(5): 619-628. DOI:  10.11898/1001-7313.20240509.
Song Yanling, Zhou Guangsheng, Guo Jianping, et al. Influence of different sowing dates on yield and quality of corn Xianyu 335. J Appl Meteor Sci, 2024, 35(5): 619-628. DOI:  10.11898/1001-7313.20240509.
Citation: Song Yanling, Zhou Guangsheng, Guo Jianping, et al. Influence of different sowing dates on yield and quality of corn Xianyu 335. J Appl Meteor Sci, 2024, 35(5): 619-628. DOI:  10.11898/1001-7313.20240509.

不同播期对玉米先玉335产量和品质的影响

DOI: 10.11898/1001-7313.20240509
资助项目: 

中国气象局创新发展专项 CXFZ2024J049

中国气象局创新发展专项 CXFZ2023J043

详细信息
    通信作者:

    宋艳玲, 邮箱:songyl@cma.gov.cn

Influence of Different Sowing Dates on Yield and Quality of Corn Xianyu 335

  • 摘要: 利用2018—2023年吉林榆树农业气象试验站玉米大田分期播种试验研究不同播期对玉米生长发育、产量构成和籽粒品质的影响, 探讨改变玉米播期作为农业适应气候变化措施的可行性。研究发现:玉米不同播期, 玉米生长期内积温利用效率不同, 第1播期积温最高, 第4播期积温比第1播期平均减少8.3%。玉米不同播期对生长期长度造成影响, 玉米第1播期生长期长度比第2播期(正常播期)平均延长7.5 d, 第3播期较正常播期生长期缩短5.7 d, 第4播期较正常播期生长期缩短13.8 d。玉米不同播期对产量结构造成影响, 玉米播期提前10 d, 6年试验中有2年玉米百粒重增加, 4年减少;玉米播期延迟10 d和20 d, 玉米百粒重平均减少4.8%和8.7%。玉米播期提前10 d, 单株玉米籽粒数增加0.2%, 播期延迟10 d和20 d, 籽粒数分别减少6.0%和9.3%。总体上, 玉米播期延迟10 d和20 d, 玉米单产减产10.9%和17.1%。玉米播期提前10 d, 平均单产接近正常播期单产, 部分年份单产增加。玉米播期对玉米籽粒品质影响不大。气候变暖, 东北部分地区玉米播期适当提前可以作为适应气候变化措施。
  • 图  1  —2023年玉米不同播期生长期积温(大于等于10 ℃)

    Fig. 1  Accumulated temperature (no less than 10 ℃) for different sowing dates of corn from 2018 to 2023

    图  1  —2023年玉米不同播期生长期积温(大于等于10 ℃)

    Fig. 1  Accumulated temperature (no less than 10 ℃) for different sowing dates of corn from 2018 to 2023

    图  2  —2023年玉米不同播期生长期降水量

    Fig. 2  Precipitation for different sowing dates of corn from 2018 to 2023

    图  2  —2023年玉米不同播期生长期降水量

    Fig. 2  Precipitation for different sowing dates of corn from 2018 to 2023

    图  3  —2023年玉米不同播期生长期

    Fig. 3  Growing season length for different sowing dates of corn from 2018 to 2023

    图  3  —2023年玉米不同播期生长期

    Fig. 3  Growing season length for different sowing dates of corn from 2018 to 2023

    图  4  —2023年玉米不同播期玉米百粒重

    Fig. 4  grain weight for different sowing dates of corn from 2018 to 2023

    图  4  —2023年玉米不同播期玉米百粒重

    Fig. 4  grain weight for different sowing dates of corn from 2018 to 2023

    图  5  —2023年玉米不同播期玉米单株籽粒数

    Fig. 5  Number of grains per plant for different sowing dates of corn from 2018 to 2023

    图  5  —2023年玉米不同播期玉米单株籽粒数

    Fig. 5  Number of grains per plant for different sowing dates of corn from 2018 to 2023

    图  6  —2023年玉米不同播期玉米单产

    Fig. 6  Yield for different sowing dates of corn from 2018 to 2023

    图  6  —2023年玉米不同播期玉米单产

    Fig. 6  Yield for different sowing dates of corn from 2018 to 2023

    图  7  —2023年玉米不同播期玉米单产与生长期积温(大于等于10 ℃) (a) 以及与降水量(b)的关系

    Fig. 7  Relationship between yield and accumulated temperature (no less than 10 ℃) (a) as well as precipitation(b) during the growing season for different sowing dates of corn from 2018 to 2023

    图  7  —2023年玉米不同播期玉米单产与生长期积温(大于等于10 ℃) (a) 以及与降水量(b)的关系

    Fig. 7  Relationship between yield and accumulated temperature (no less than 10 ℃) (a) as well as precipitation(b) during the growing season for different sowing dates of corn from 2018 to 2023

    图  8  —2023年玉米不同播期玉米籽粒淀粉含量(a)和蛋白质含量(b)

    Fig. 8  Starch content(a) and protein content(b) of corn grains for different sowing dates from 2018 to 2023

    图  8  —2023年玉米不同播期玉米籽粒淀粉含量(a)和蛋白质含量(b)

    Fig. 8  Starch content(a) and protein content(b) of corn grains for different sowing dates from 2018 to 2023

  • [1] IPCC(Intergovermental Panel on Climate Change).Climate Change, the Physical Science Basis, 2013.
    [2] IPCC(Intergovernmental Panel on Climate Change). Climate Change, the Physical Science Basis, 2021.
    [3] IPCC(Intergovermental Panel on Climate Change). Summary for Policymakers//Global Warming of 1.5 ℃, an IPCC Special Report on the Impacts of Global Warming of 1.5 ℃ above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development and Efforts to Eradicate Poverty, 2018.
    [4] Cheng C S, Auld H, Li Q, et al. Possible impacts of climate change on extreme weather events at local scale in south- central Canada. Climatic Change, 2012(3/4): 963-979.
    [5] 娇梅燕, 周广胜, 张祖强, 等. 农业应对气候变化蓝皮书. 北京: 社会科学文献出版社, 2016.

    Jiao M Y, Zhou G S, Zhang Z Q, et al. Blue Book of Agriculture for Addressing Climate Change. Beijing: Social Sciences Academic Press, 2016.
    [6] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2023.

    National Bureau of Statistics. China Statistical Yearbook. Beijing: China Statistics Press, 2023.
    [7] 宋艳玲, 王建林. 气候变化背景下农业气象灾害对我国农业生产影响评估技术. 北京: 气象出版社, 2017.

    Song Y L, Wang J L. The Influence of Agriculture Meteorological Disasters on Agriculture in China under Climate Change. Beijing: China Meteorological Press, 2017.
    [8] 郭建平, 田志会, 张涓涓. 东北地区玉米热量指数的预测模型研究. 应用气象学报, 2003, 14(5): 626-633. doi:  10.3969/j.issn.1001-7313.2003.05.013

    Guo J P, Tian Z H, Zhang J J. Forecasting models of heat index for corn in Northeast China. J Appl Meteor Sci, 2003, 14(5): 626-633. doi:  10.3969/j.issn.1001-7313.2003.05.013
    [9] 王贺然, 刘东明, 陈鹏狮, 等. 基于积温带重新划分的东北玉米熟型分布研究. 中国农业资源与区划, 2022, 43(5): 102-112.

    Wang H R, Liu D M, Chen P S, et al. Distribution of maturity types of maize based on accumulated temperature rezone in Northeast China. Chinese J Agric Resour Reg Plan, 2022, 43(5): 102-112.
    [10] 霍治国, 张海燕, 李春晖, 等. 中国玉米高温热害研究进展. 应用气象学报, 2023, 34(1): 1-14.

    Huo Z G, Zhang H Y, Li C H, et al. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34(1): 1-14.
    [11] 杨磊, 韩丽娟, 宋金玲, 等. 基于遥感数据的夏玉米高温热害监测评估. 应用气象学报, 2020, 31(6): 749-758.

    Yang L, Han L J, Song J L, et al. Monitoring and evaluation of high temperature and heat damage of summer maize based on remote sensing data. J Appl Meteor Sci, 2020, 31(6): 749-758.
    [12] 王培娟, 霍治国, 杨建莹, 等. 基于热量指数的东北春玉米冷害指标. 应用气象学报, 2019, 30(1): 13-24.

    Wang P J, Huo Z G, Yang J Y, et al. Indicators of chilling damage for spring maize based on heat index in Northeast China. J Appl Meteor Sci, 2019, 30(1): 13-24.
    [13] 刘布春, 王石立, 庄立伟, 等. 基于东北玉米区域动力模型的低温冷害预报应用研究. 应用气象学报, 2003, 14(5): 616-625. doi:  10.3969/j.issn.1001-7313.2003.05.012

    Liu B C, Wang S L, Zhuang L W, et al. Study of low temperature damage prediction applications in EN, China based on a scaling-up maize dynamic model. J Appl Meteor Sci, 2003, 14(5): 616-625. doi:  10.3969/j.issn.1001-7313.2003.05.012
    [14] 冯晓钰, 周广胜. 碳四植物光合生化机理模型的叶片含水量修正. 应用气象学报, 2022, 33(3): 375-384.

    Feng X Y, Zhou G S. Modification of leaf water content for the photosynthetic and biochemical mechanism model of C4 plant. J Appl Meteor Sci, 2022, 33(3): 375-384.
    [15] 吕厚荃, 钱拴, 杨霏云, 等. 华北地区玉米田实际蒸散量的计算. 应用气象学报, 2003, 14(6): 726-732.

    Lu H Q, Qian S, Yang F Y, et al. Estimation of actual evapotranspiration for maize field in North China. J Appl Meteor Sci, 2003, 14(6): 726-732.
    [16] 郭建平, 栾青, 王婧瑄, 等. 玉米冠层对降水的截留模型构建. 应用气象学报, 2020, 31(4): 397-404.

    Guo J P, Luan Q, Wang J X, et al. Model construction of rainfall interception by maize canopy. J Appl Meteor Sci, 2020, 31(4): 397-404.
    [17] 宋艳玲, 王建林, 田靳峰, 等. 气象干旱指数在东北春玉米干旱监测中的改进. 应用气象学报, 2019, 30(1): 25-34.

    Song Y L, Wang J L, Tian J F, et al. The spring maize drought index in Northeast China based on meteorological drought index. J Appl Meteor Sci, 2019, 30(1): 25-34.
    [18] 蔡福, 米娜, 明惠青, 等. WOFOST模型蒸散过程改进对玉米干旱模拟影响. 应用气象学报, 2021, 32(1): 52-64.

    Cai F, Mi N, Ming H Q, et al. Effects of improving evapotranspiration parameterization scheme on WOFOST model performance in simulating maize drought stress process. J Appl Meteor Sci, 2021, 32(1): 52-64.
    [19] 陈雨烨, 王培娟, 张源达, 等. 基于3种遥感指数的东北春玉米干旱识别对比. 应用气象学报, 2022, 33(4): 466-476.

    Chen Y Y, Wang P J, Zhang Y D, et al. Comparison of drought recognition of spring maize in Northeast China based on 3 remote sensing indices. J Appl Meteor Sci, 2022, 33(4): 466-476.
    [20] 李燕, 王志伟, 霍治国, 等. 干旱对夏玉米根冠及产量影响试验. 应用气象学报, 2020, 31(1): 83-94.

    Li Y, Wang Z W, Huo Z G, et al. Experiments of water stress on root/shoot growth and yield of summer maize. J Appl Meteor Sci, 2020, 31(1): 83-94.
    [21] 宋艳玲. 全球干旱指数研究进展. 应用气象学报, 2022, 33(5): 513-526.

    Song Y L. Global research progress of drought indices. J Appl Meteor Sci, 2022, 33(5): 513-526.
    [22] 米前川, 高西宁, 李玥, 等. 深度学习方法在干旱预测中的应用. 应用气象学报, 2022, 33(1): 104-114.

    Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114.
    [23] 吴玮, 景元书, 马玉平, 等. 干旱环境下夏玉米各生育时期光响应特征. 应用气象学报, 2013, 24(6): 723-730. doi:  10.3969/j.issn.1001-7313.2013.06.009

    Wu W, Jing Y S, Ma Y P, et al. Light response characteristics of summer maize at different growth stages under drought. J Appl Meteor Sci, 2013, 24(6): 723-730. doi:  10.3969/j.issn.1001-7313.2013.06.009
    [24] 徐永清, 刘赫男, 刘春生, 等. 黑龙江省玉米暴雨洪涝灾害风险评估研究. 中国农学通报, 2023, 39(30): 94-100. doi:  10.11924/j.issn.1000-6850.casb2022-0880

    Xu Y Q, Liu H N, Liu C S, et al. Study on risk assessment of maize rainstorm and flood disaster in Heilongjiang Province. Chinese Agric Sci Bull, 2023, 39(30): 94-100. doi:  10.11924/j.issn.1000-6850.casb2022-0880
    [25] 郑江平, 王春乙. 低温、干旱并发对玉米苗期生理过程的影响. 应用气象学报, 2006, 17(1): 119-123. doi:  10.3969/j.issn.1001-7313.2006.01.017

    Zheng J P, Wang C Y. Impact of chilling temperature and drought on corn physiological process in seedling stage. J Appl Meteor Sci, 2006, 17(1): 119-123. doi:  10.3969/j.issn.1001-7313.2006.01.017
    [26] 魏瑞江, 宋迎波, 王鑫. 基于气候适宜度的玉米产量动态预报方法. 应用气象学报, 2009, 20(5): 622-627. doi:  10.3969/j.issn.1001-7313.2009.05.014

    Wei R J, Song Y B, Wang X. Method for dynamic forecast of corn yield based on climatic suitability. J Appl Meteor Sci, 2009, 20(5): 622-627. doi:  10.3969/j.issn.1001-7313.2009.05.014
    [27] 漆栋良, 朱建强. 旱涝急转对玉米叶片衰老特性和产量的影响. 农业工程学报, 2024, 40(5): 141-147.

    Qi D L, Zhu J Q. Effects of drought-flood abrupt alternation on the characteristics of leaf senescence and grain yield of maize. Trans Chinese Soc Agric Eng, 2024, 40(5): 141-147.
    [28] 穆佳, 赵俊芳, 郭建平. 近30年东北春玉米发育期对气候变化的响应. 应用气象学报, 2014, 25(6): 680-689.

    Mu J, Zhao J F, Guo J P. Response of spring maize growth stage to climate change in Northeast China over the past 30 years. J Appl Meteor Sci, 2014, 25(6): 680-689.
    [29] 栾文杰, 申晓晶, 李王成, 等. 宁夏北部引黄灌区玉米生长季气候变化及其对气候产量影响. 江西农业大学学报, 2023, 45(4): 841-854.

    Luan W J, Shen X J, Li W C, et al. Climate change in the growing season of maize in northern Ningxia yellow irrigation area and its impact on climate yield. Acta Agric Univ Jiangxiensis, 2023, 45(4): 841-854.
    [30] 徐延红, 李树岩. 气候变化对河南省小麦和玉米气候资源利用效率的影响. 干旱地区农业研究, 2019, 37(5): 218-225.

    Xu Y H, Li S Y. Impact of climate change on climatic resources utilization efficiency of wheat and maize in Henan Province. Agric Res Arid Areas, 2019, 37(5): 218-225.
    [31] 赵放, 李秀芬, 林伟楠, 等. 气候变化对玉米气候生产潜力的影响. 农业工程, 2019, 9(8): 132-134.

    Zhao F, Li X F, Lin W N, et al. Impact of climate change on climate productivity potential of maize. Agric Eng, 2019, 9(8): 132-134.
    [32] 国家气象局. 农业气象观测规范(上卷). 北京: 气象出版社, 1993.

    China Meteorological Administration. Agricultural Meteorological Observation(Volume I). Beijing: China Meteorological Press, 1993.
    [33] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 中华人民共和国国标, 食品安全国家标准食品中蛋白质的测定. GB5009.5—2016, 2016.

    National Health Commission of the People's Republic of China, National Medical Products Administration. National Standard of the People's Republic of China, National Food Safety Standards-determination of Protein in Foods. GB5009.5-2016, 2016.
  • 加载中
图(16)
计量
  • 摘要浏览量:  138
  • HTML全文浏览量:  22
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-13
  • 修回日期:  2024-07-10
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回