Water-nitrogen Managements for Spring Maize at Tuquan, Inner Mongolia Based on APSIM
-
摘要: 水分和氮肥是制约旱地农业生产的重要因素。基于2013—2022年内蒙古自治区突泉春玉米发育期、单产和田间管理数据, 对农业生产系统模型(agricultural production system simulator, APSIM)调参验证; 基于验证后的模型, 结合1981—2022年突泉气象数据, 设计不同水分亏缺程度下水氮管理情景, 以春玉米单产、水氮用量和效率为指标, 提出春玉米最优水氮管理措施, 并分析不同降水年型下春玉米适宜灌溉量和施氮量。结果表明: APSIM对春玉米出苗-开花日数、出苗-成熟日数和单产模拟值与实测值的归一化均方根误差分别为1.3%、1.2%和2.8%, APSIM可定量模拟春玉米发育期和单产。综合春玉米单产、灌溉量、施氮量、水分生产力和氮肥农学效率, 最优管理措施为0~100 cm土壤剖面深度下水分亏缺程度为60%时补充灌溉, 灌溉量为171.0 mm, 施氮量为197.8 kg·hm-2。当春玉米生长季降水量为200~400、401~600 mm和601~800 mm时, 适宜的灌溉量分别为233.0~283.5、110.5~148.4 mm和125.0~155.0 mm, 施氮量分别为176.9~219.3、218.3~241.5 kg·hm-2和211.8~249.9 kg·hm-2。Abstract: Water and nitrogen are critical factors that constrain the sustainable production of dryland agriculture. With increasingly severe crisis of water and nitrogen resources and environment, exploring and optimizing water-nitrogen managements, and hence achieving coordinated and unified resource conservation, high and stable grain production, and high efficiency are of great significance for agricultural development. Key parameters of APSIM (agricultural production system simulator) are calibrated and validated based on spring maize phenology, yield, and field management data from Tuquan, Inner Mongolia Autonomous Region from 2013 to 2022. Combined with meteorological data from 1981 to 2022 at Tuquan, water-nitrogen management scenarios are designed under different water deficit levels. Optimal water-nitrogen managements for spring maize at Tuquan are proposed based on indicators including spring maize yield, irrigation amount, nitrogen application amount, water productivity, and agronomic efficiency of applied nitrogen. Furthermore, the suitable irrigation and nitrogen application amounts for spring maize under different precipitation year types are analyzed. Results show that normalized root mean squared errors of the simulated and observed days from emergence to flowering, days from emergence to maturity, and yield of spring maize are 1.3%, 1.2% and 2.8%, respectively. APSIM can quantitatively simulate the growth period and yield of spring maize. Based on the principle that yield, water productivity, and agronomic efficiency of applied nitrogen of spring maize do not significantly decrease compared to the maximum values of all scenarios, and irrigation and nitrogen application amounts do not significantly increase compared to the minimum values of all scenarios, four management measures with no significant differences can be selected, namely, starting automatic irrigation when water deficit reaches 40%, 50%, 60% at the depth of 0-100 cm, and when the water deficit reaches 60% at the depth of 0-60 cm. Among them, the optimal auto-irrigation management for spring maize at Tuquan is to apply irrigation when the water deficit reaches 60% at the depth of 0-100 cm. In this scenario, the irrigation amount is 171.0 mm, and the nitrogen application amount is 197.8 kg·hm-2. When the precipitation during the spring maize growing season is 200-400 mm, the appropriate irrigation amount is 233.0-283.5 mm, and the nitrogen application amount is 176.9-219.3 kg·hm-2. When the precipitation during the spring maize growing season is 401-600 mm, the appropriate irrigation amount is 110.5-148.4 mm, and the nitrogen application amount is 218.3-241.5 kg·hm-2, respectively. When the precipitation during the spring maize growing season is 601-800 mm, the suitable irrigation amount is 125.0-155.0 mm, and the nitrogen application amount is 211.8-249.9 kg·hm-2. This study provides a quantitative reference for utilizing crop mechanism models in real-time monitoring, diagnosis, and precise management of crop water and nitrogen.
-
表 1 调整后APSIM关键参数值
Table 1 Specific values of APSIM key parameters after parameter adjustment
描述 单位 参数值 出苗到拔节期结束的有效积温 出苗到拔节期结束的有效积温>℃·d 出苗到拔节期结束的有效积温>210 孕穗期到开花的有效积温 ℃·d 10 开花到灌浆的有效积温 ℃·d 10 开花到成熟的有效积温 ℃·d 730 最适光周期 h 12.5 光周期最大临界值 h 24.0 光周期斜率 ℃·h-1 0.0 每株最大籽粒数 650 每平方米茎秆重 g 120 植株高度 mm 3000 表 1 调整后APSIM关键参数值
Table 1 Specific values of APSIM key parameters after parameter adjustment
描述 单位 参数值 出苗到拔节期结束的有效积温 出苗到拔节期结束的有效积温>℃·d 出苗到拔节期结束的有效积温>210 孕穗期到开花的有效积温 ℃·d 10 开花到灌浆的有效积温 ℃·d 10 开花到成熟的有效积温 ℃·d 730 最适光周期 h 12.5 光周期最大临界值 h 24.0 光周期斜率 ℃·h-1 0.0 每株最大籽粒数 650 每平方米茎秆重 g 120 植株高度 mm 3000 表 2 不同情景下春玉米单产、水分生产力和氮肥农学效率的差异
Table 2 Variations in spring maize yield, water productivity and agronomic efficiency of applied nitrogen under different scenarios
土壤剖面深度/cm 土壤水分亏缺程度/% 单产/ (kg·hm-2) 高稳系数 灌溉量/ mm 施氮量/ (kg·hm-2) 水分生产力/ (kg·hm-2·mm-1) 氮肥农学效率/ (kg·kg-1) 0~200 10 13035.2 0.82 319.8 293.5 16.4 22.0 20 12343.3 0.77 219.3* 214.1* 18.2 26.2 30 11252.9 0.68 170.2* 189.5* 18.2 26.5 40 9807.3* 0.54 131.2* 154.8* 17.0 26.8* 50 8307.9* 0.39 94.1* 137.7* 15.5 24.6 60 6661.1* 0.22 58.3* 112.4* 13.1* 23.2 0~100 10 13230.2 0.83 358.3 317.8 15.7 19.8 20 13044.2 0.82 279.8* 279.3 17.4 22.7 30 12777.1 0.80 242.4* 247.1* 18.1 24.8* 40 12458.1 0.78 214.6* 224.7* 18.6 25.3* 50 12016.8 0.74 193.2* 217.2* 18.6 25.8* 60 11519.0 0.69 171.0* 197.8* 18.6 24.8* 0~60 10 13292.6 0.83 379.8 335.1 15.3 18.6 20 13122.6 0.82 301.5* 279.4* 16.9 22.3 30 12974.9 0.81 264.1* 262.4* 17.8 23.9* 40 12744.2 0.79 241.0* 249.7* 18.1* 24.7* 50 12483.6 0.77 218.8* 241.9* 18.4* 24.8* 60 12210.3 0.75 206.1* 226.6* 18.4* 24.2* 注:*表示与同一土壤剖面深度下土壤水分亏缺程度为10%情景的差异达到0.05显著性水平。 表 2 不同情景下春玉米单产、水分生产力和氮肥农学效率的差异
Table 2 Variations in spring maize yield, water productivity and agronomic efficiency of applied nitrogen under different scenarios
土壤剖面深度/cm 土壤水分亏缺程度/% 单产/ (kg·hm-2) 高稳系数 灌溉量/ mm 施氮量/ (kg·hm-2) 水分生产力/ (kg·hm-2·mm-1) 氮肥农学效率/ (kg·kg-1) 0~200 10 13035.2 0.82 319.8 293.5 16.4 22.0 20 12343.3 0.77 219.3* 214.1* 18.2 26.2 30 11252.9 0.68 170.2* 189.5* 18.2 26.5 40 9807.3* 0.54 131.2* 154.8* 17.0 26.8* 50 8307.9* 0.39 94.1* 137.7* 15.5 24.6 60 6661.1* 0.22 58.3* 112.4* 13.1* 23.2 0~100 10 13230.2 0.83 358.3 317.8 15.7 19.8 20 13044.2 0.82 279.8* 279.3 17.4 22.7 30 12777.1 0.80 242.4* 247.1* 18.1 24.8* 40 12458.1 0.78 214.6* 224.7* 18.6 25.3* 50 12016.8 0.74 193.2* 217.2* 18.6 25.8* 60 11519.0 0.69 171.0* 197.8* 18.6 24.8* 0~60 10 13292.6 0.83 379.8 335.1 15.3 18.6 20 13122.6 0.82 301.5* 279.4* 16.9 22.3 30 12974.9 0.81 264.1* 262.4* 17.8 23.9* 40 12744.2 0.79 241.0* 249.7* 18.1* 24.7* 50 12483.6 0.77 218.8* 241.9* 18.4* 24.8* 60 12210.3 0.75 206.1* 226.6* 18.4* 24.2* 注:*表示与同一土壤剖面深度下土壤水分亏缺程度为10%情景的差异达到0.05显著性水平。 表 3 最优管理措施下不同降水年型春玉米灌溉量(单位:mm)
Table 3 Irrigation amount of spring maize for different precipitation year types under optimal managements (unit: mm)
降水量/mm 0~100 cm土壤剖面深度 0~60 cm土壤剖面深度 水分亏缺程度为40% 水分亏缺程度为50% 水分亏缺程度为60% 水分亏缺程度为60% 200~400 283.5 261.0 233.0 279.0 401~600 148.4 126.8 110.5 137.4 601~800 155.0 145.0 125.0 130.0 表 3 最优管理措施下不同降水年型春玉米灌溉量(单位:mm)
Table 3 Irrigation amount of spring maize for different precipitation year types under optimal managements (unit: mm)
降水量/mm 0~100 cm土壤剖面深度 0~60 cm土壤剖面深度 水分亏缺程度为40% 水分亏缺程度为50% 水分亏缺程度为60% 水分亏缺程度为60% 200~400 283.5 261.0 233.0 279.0 401~600 148.4 126.8 110.5 137.4 601~800 155.0 145.0 125.0 130.0 表 4 最优管理措施下不同降水年型春玉米施氮量(单位:kg·hm-2)
Table 4 Nitrogen application amount of spring maize for different precipitation year types under optimal managements (unit: kg·hm-2)
降水量/mm 0~100 cm土壤剖面深度 0~60 cm土壤剖面深度为 水分亏缺程度40% 水分亏缺程度为50% 水分亏缺程度为60% 水分亏缺程度为60% 200~400 219.3 198.9 176.9 210.2 401~600 230.3 237.0 218.3 241.5 601~800 225.1 211.7 211.8 249.9 表 4 最优管理措施下不同降水年型春玉米施氮量(单位:kg·hm-2)
Table 4 Nitrogen application amount of spring maize for different precipitation year types under optimal managements (unit: kg·hm-2)
降水量/mm 0~100 cm土壤剖面深度 0~60 cm土壤剖面深度为 水分亏缺程度40% 水分亏缺程度为50% 水分亏缺程度为60% 水分亏缺程度为60% 200~400 219.3 198.9 176.9 210.2 401~600 230.3 237.0 218.3 241.5 601~800 225.1 211.7 211.8 249.9 -
[1] Li E, Zhao J, Pullens J W M, et al. The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China. Sci Total Environ, 2022, 812. DOI: 10.1016/j.scitotenv.2021.152461. [2] 陈雨烨, 王培娟, 张源达, 等. 基于3种遥感指数的东北春玉米干旱识别对比. 应用气象学报, 2022, 33(4): 466-476.Chen Y Y, Wang P J, Zhang Y D, et al. Comparison of drought recognition of spring maize in Northeast China based on 3 remote sensing indices. J Appl Meteor Sci, 2022, 33(4): 466-476. [3] 霍治国, 张海燕, 李春晖, 等. 中国玉米高温热害研究进展. 应用气象学报, 2023, 34(1): 1-14.Huo Z G, Zhang H Y, Li C H, et al. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34(1): 1-14. [4] 毛振强, 张银锁, 宇振荣. 基于作物生长模型的夏玉米灌溉需求分析. 作物学报, 2003, 29(3): 419-426. doi: 10.3321/j.issn:0496-3490.2003.03.018Mao Z Q, Zhang Y S, Yu Z R. Water requirement and irrigation scenarios of summer maize production aided by crop growth simulation model. Acta Agron Sinica, 2003, 29(3): 419-426. doi: 10.3321/j.issn:0496-3490.2003.03.018 [5] 陈东峰, 罗朋, 张富仓, 等. 膜下滴灌水肥调控对玉米生长和水肥利用的影响. 干旱地区农业研究, 2018, 36(5): 161-168.Chen D F, Luo P, Zhang F C, et al. Effects of irrigation and fertilization regulation on maize growth, water and nutrient use of drip irrigation under plastic film. Agric Res Arid Areas, 2018, 36(5): 161-168. [6] 陈世超, 刘文丰, 杜太生. 基于水氮管理与种植结构优化的作物丰产高效管理策略. 农业工程学报, 2022, 38(16): 144-152.Chen S C, Liu W F, Du T S. Achieving high-yield and high-efficient management strategy based on optimized irrigation and nitrogen fertilization management and planting structure. Trans Chinese Soc Agric Eng, 2022, 38(16): 144-152. [7] 党建友, 裴雪霞, 张定一, 等. 微喷灌水氮一体化对冬小麦生长发育和水肥利用效率的影响. 应用生态学报, 2020, 31(11): 3700-3710.Dang J Y, Pei X X, Zhang D Y, et al. Effects of integration of micro-sprinkler irrigation and nitrogen on growth and development of winter wheat and water and fertilizer use efficiency. Chinese J Appl Ecol, 2020, 31(11): 3700-3710. [8] 赵国强, 朱自玺, 邓天宏, 等. 水分和氮肥对冬小麦产量的影响及其调控技术. 应用气象学报, 1999, 10(3): 314-320. doi: 10.3969/j.issn.1001-7313.1999.03.008Zhao G Q, Zhu Z X, Deng T H, et al. The influences of water and nitrogenous fertilizer on winter wheat yield and the controlling technique. J Appl Meteor Sci, 1999, 10(3): 314-320. doi: 10.3969/j.issn.1001-7313.1999.03.008 [9] 刘富强, 窦超银, 顾桂栋, 等. 风沙土水肥一体化滴灌水量对玉米生长和产量的影响. 江苏农业科学, 2023, 51(5): 110-116.Liu F Q, Dou C Y, Gu G D, et al. Impacts of water and fertilizer drip irrigation on growth and yield of maize in windy sandy soil. Jiangsu Agric Sci, 2023, 51(5): 110-116. [10] Lobell D B, Hammer G L, McLean G, et al. The critical role of extreme heat for maize production in the United States. Nature Clim Change, 2013, 3(5): 497-501. doi: 10.1038/nclimate1832 [11] 王凤仙, 陈研, 李韵珠. 土壤水氮资源的利用与管理Ⅲ. 冬小麦夏玉米水氮管理措施的优化. 植物营养与肥料学报, 2000, 6(1): 18-23.Wang F X, Chen Y, Li Y Z. Use and management of soil water and nitrogen resources Ⅲ. The optimal management of soil water and nitrogen resources. Plant Natrition Fertil Sci, 2000, 6(1): 18-23. [12] 董朝阳, 刘志娟, 杨晓光. 北方地区不同等级干旱对春玉米产量影响. 农业工程学报, 2015, 31(11): 157-164.Dong C Y, Liu Z J, Yang X G. Effects of different grade drought on grain yield of spring maize in northern China. Trans Chinese Soc Agric Eng, 2015, 31(11): 157-164. [13] 刘志娟, 杨晓光, 王静, 等. APSIM玉米模型在东北地区的适应性. 作物学报, 2012, 38(4): 740-746.Liu Z J, Yang X G, Wang J, et al. Adaptability of APSIM maize model in Northeast China. Acta Agron Sinica, 2012, 38(4): 740-746. [14] 侯英雨, 张蕾, 吴门新, 等. 国家级现代农业气象业务技术进展. 应用气象学报, 2018, 29(6): 641-656.Hou Y Y, Zhang L, Wu M X, et al. Advances of modern agrometeorological service and technology in China. J Appl Meteor Sci, 2018, 29(6): 641-656. [15] 王文佳, 冯浩. 国外主要作物模型研究进展与存在问题. 节水灌溉, 2012(8): 63-68.Wang W J, Feng H. The progress and problems in the development of foreign crop models. Water Sav Irrig, 2012(8): 63-68. [16] 史源, 李益农, 白美健, 等. DSSAT作物模型进展以及在农田水管理中的应用研究. 中国农村水利水电, 2015(1): 15-19.Shi Y, Li Y N, Bai M J, et al. Research on the development and application of DSSAT cropping system model in water management and irrigation. China Rural Water Hydropower, 2015(1): 15-19. [17] Ran H, Kang S Z, Li F S, et al. Responses of water productivity to irrigation and N supply for hybrid maize seed production in an arid region of Northwest China. J Arid Land, 2017, 9(4): 504-514. [18] 赵建华. 河西绿洲灌区制种玉米种子生产的水氮效应. 兰州: 甘肃农业大学, 2016.Zhao J H. Effects of Water and Nitrogen on Seed Production of Maize in Hexi Oasis Irrigation Area. Lanzhou: Gansu Agricultural University, 2016. [19] 周奇, 王凤新, 赵妍, 等. 西北旱区膜下滴灌的水氮管理及种植密度对制种玉米生长的影响. 中国农学通报, 2016, 32(21): 166-173.Zhou Q, Wang F X, Zhao Y, et al. Influence of water and nitrogen management and planting density on seed maize growth under drip irrigation with mulch in arid region of Northwest China. Chinese Agric Sci Bull, 2016, 32(21): 166-173. [20] 李晶晶, 臧文静, 黎耀军, 等. 喷灌施氮管理对春玉米产量及水氮利用的影响. 排灌机械工程学报, 2020, 38(12): 1277-1283.Li J J, Zang W J, Li Y J, et al. Effects of different nitrogen managements on spring maize yield, water and nitrogen use efficiency under sprinkler fertigation. J Drain Irrig Mach Eng, 2020, 38(12): 1277-1283. [21] 关凯心, 郭尔静, 高继卿, 等. 华北地区一年两熟种植模式智慧应对气候变化的水氮管理措施. 中国农业气象, 2023, 44(6): 453-468.Guan K X, Guo E J, Gao J Q, et al. Climate-smart water-nitrogen managements for main patterns of double-cropping system in North China Plain. Chinese J Agrometeorol, 2023, 44(6): 453-468. [22] 程谊, 张金波, 蔡祖聪. 气候-土壤-作物之间氮形态契合在氮肥管理中的关键作用. 土壤学报, 2019, 56(3): 507-515.Cheng Y, Zhang J B, Cai Z C. Key role of matching of crop-specific N preference, soil N transformation and climate conditions in soil N nutrient management. Acta Pedol Sinica, 2019, 56(3): 507-515. [23] 郭建平, 栾青, 王婧瑄, 等. 玉米冠层对降水的截留模型构建. 应用气象学报, 2020, 31(4): 397-404.Guo J P, Luan Q, Wang J X, et al. Model construction of rainfall interception by maize canopy. J Appl Meteor Sci, 2020, 31(4): 397-404. [24] 朱凤磊, 张立新, 胡雪, 等. 基于蝙蝠优化BP-PID算法的精准施肥控制系统研究. 农业机械学报, 2023, 54(增刊Ⅰ): 135-143.Zhu F L, Zhang L X, Hu X, et al. Research on precision fertilization control system based on bat optimization BP-PID algorithm. Trans Chinese Soc Agric Mach, 2023, 54(Suppl Ⅰ): 135-143. [25] Probert M E, Keating B A, Thompson J P, et al. Modelling water, nitrogen, and crop yield for a long-term fallow management experiment. Aust J Exp Agric, 1995, 35(7): 941-950. [26] Asseng S, van Keulen H, Stol W. Performance and application of the APSIM Nwheat model in the Netherlands. Eur J Agron, 2000, 12(1): 37-54. [27] Wang G C, Luo Z K, Wang E L, et al. Reducing greenhouse gas emissions while maintaining yield in the croplands of Huang-Huai-Hai Plain, China. Agric For Meteor, 2018, 260: 80-94. [28] Zhao G, Bryan B A, Song X D. Sensitivity and uncertainty analy-sis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecol Model, 2014, 279: 1-11. [29] 孙爽, 王春乙, 宋艳玲, 等. 我国北方一作区马铃薯高产稳产区分布特征. 应用气象学报, 2021, 32(4): 385-396.Sun S, Wang C Y, Song Y L, et al. Distributions of high and stable yield zones for potato in the single-cropping region in northern China. J Appl Meteor Sci, 2021, 32(4): 385-396. [30] 温振民, 张永科. 用高稳系数法估算玉米杂交种高产稳产性的探讨. 作物学报, 1994, 20(4): 508-512.Wen Z M, Zhang Y K. Discussion on estimating high and stable yield of maize hybrids by high stability coefficient method. Acta Agron Sinica, 1994, 20(4): 508-512. [31] 贾新合, 王金召, 刘淑梅, 等. 应用高稳系数法分析棉花新品种的高产稳产性. 江西棉花, 2000, 22(3): 23-25.Jia X H, Wang J Z, Liu S M, et al. To analyse the high and stable yields of cotton new breeds by practising high and stable cofficient method. Jiangxi Cottons, 2000, 22(3): 23-25. [32] 王晓煜, 杨晓光, Tao Li, 等. 东北三省水稻干湿交替灌溉模式适宜性分区. 农业工程学报, 2018, 34(6): 111-120.Wang X Y, Yang X G, Tao L, et al. Rice suitability zoning of alternative wetting and drying irrigation mode in three provinces of Northeast China. Trans Chinese Soc Agric Eng, 2018, 34(6): 111-120. [33] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924.Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sinica, 2008, 45(5): 915-924. [34] Duncan D B. Multiple range and multiple F tests. Biometrics, 1955, 11(1): 1-42. [35] Kruskal W H, Wallis W A. Errata: Use of ranks in one-criterion variance analysis. J Am Stat Assoc, 1952, 47(260): 583-621. [36] 王科捷, 杨乔乔, 王佳, 等. 水氮协同对玉米光合特性及产量的影响. 中国土壤与肥料, 2023(7): 48-55.Wang K J, Yang Q Q, Wang J, et al. Synergistic effects of water and nitrogen on photosynthetic characteristics and yield of maize. Soil Fertil Sci China, 2023(7): 48-55. [37] 朱丽, 史海滨, 王宁, 等. 基于ISAREG模型的小麦间作玉米优化灌溉制度研究. 灌溉排水学报, 2012, 31(4): 26-31.Zhu L, Shi H B, Wang N, et al. Crop water requirement and optimization of irrigation system of intercrop wheat and maize by ISAREG model. J Irrig Drain, 2012, 31(4): 26-31. [38] 王晓云, 蔡焕杰, 李亮, 等. 亏缺灌溉对冬小麦农田温室气体排放的影响. 环境科学, 2019, 40(5): 2413-2425.Wang X Y, Cai H J, Li L, et al. Effects of water deficit on greenhouse gas emission in wheat field in different periods. Environ Sci, 2019, 40(5): 2413-2425. [39] 李莹, 王国复. 气象灾害风险管理系统设计与应用. 应用气象学报, 2022, 33(5): 628-640.Li Y, Wang G F. Design and implementation of meteorological disaster risk management system. J Appl Meteor Sci, 2022, 33(5): 628-640. [40] He D, Wang E L, Wang J, et al. Uncertainty in canola phenology modelling induced by cultivar parameterization and its impact on simulated yield. Agric For Meteor, 2017, 232: 163-175. [41] Han C Y, Zhang B Z, Chen H, et al. Novel approach of upscaling the FAO AquaCrop model into regional scale by using distributed crop parameters derived from remote sensing data. Agric Water Manag, 2020, 240. DOI: 10.1016/j.agwat.2020.106288. [42] 刘布春, 王石立, 马玉平. 国外作物生长模型区域应用中升尺度问题的研究. 中国生态农业学报, 2003, 11(4): 89-91.Liu B C, Wang S L, Ma Y P. A study on abroad challenges of scaling-up of crop models for regional applications. Chinese J Eco Agric, 2003, 11(4): 89-91. [43] 孙光辉, 段居琦, 李俊儒, 等. 气候-土地综合影响的我国油茶农业气候区划. 应用气象学报, 2024, 35(4): 444-455.Sun G H, Duan J Q, Li J R, et al. Agro-climatic zoning of oiltea camellia in China based on climate-land integrated impacts. J Appl Meteor Sci, 2024, 35(4): 444-455. [44] 王俊方, 周广胜, 宋艳玲, 等. 气象条件对廉玉1号玉米产量的影响. 应用气象学报, 2023, 34(3): 373-378.Wang J F, Zhou G S, Song Y L, et al. Effects of meteorological conditions on the yield of Lianyu No. 1 maize. J Appl Meteor Sci, 2023, 34(3): 373-378. [45] 叶佩, 宋春燕, 刘凯文, 等. 江汉平原不同稻作模式下温室气体排放特征. 应用气象学报, 2022, 33(6): 748-758.Ye P, Song C Y, Liu K W, et al. Greenhouse gas emission characteristics of different rice cropping patterns in Jianghan Plain. J Appl Meteor Sci, 2022, 33(6): 748-758. [46] 张慧, 高全, 常姝婷, 等. 东北雨养玉米田碳交换年际变化及影响因素. 应用气象学报, 2023, 34(2): 246-256.Zhang H, Gao Q, Chang S T, et al. Interannual carbon exchange variability of rain-fed maize fields in Northeast China and its influencing factors. J Appl Meteor Sci, 2023, 34(2): 246-256.