留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型粉末型吸湿性催化剂的雾室及静态检测

车云飞 刘汐敬 苏正军 党娟 方春刚 刘伟 李军霞 陈宝君

车云飞, 刘汐敬, 苏正军, 等. 典型粉末型吸湿性催化剂的雾室及静态检测. 应用气象学报, 2024, 35(6): 704-714. DOI:  10.11898/1001-7313.20240606..
引用本文: 车云飞, 刘汐敬, 苏正军, 等. 典型粉末型吸湿性催化剂的雾室及静态检测. 应用气象学报, 2024, 35(6): 704-714. DOI:  10.11898/1001-7313.20240606.
Che Yunfei, Liu Xijing, Su Zhengjun, et al. Fog chamber and static detection of typical powdered hygroscopic catalysts. J Appl Meteor Sci, 2024, 35(6): 704-714. DOI:  10.11898/1001-7313.20240606.
Citation: Che Yunfei, Liu Xijing, Su Zhengjun, et al. Fog chamber and static detection of typical powdered hygroscopic catalysts. J Appl Meteor Sci, 2024, 35(6): 704-714. DOI:  10.11898/1001-7313.20240606.

典型粉末型吸湿性催化剂的雾室及静态检测

DOI: 10.11898/1001-7313.20240606
资助项目: 

国家重点研发计划 2023YFC3007600

中国气象局云降水物理与人工影响天气重点开放实验室创新基金 2023CPML-A03

详细信息
    通信作者:

    刘汐敬, 邮箱: liu_xijing@163.com

Fog Chamber and Static Detection of Typical Powdered Hygroscopic Catalysts

  • 摘要: 暖云催化剂在人工影响天气暖云催化降水和暖性云雾消除方面应用前景广阔, 近年开发的各类新型材料有望在暖云催化中使用, 但目前仍缺少效果理想的制剂配方, 亟需在相同试验条件下对比各类吸湿性催化剂的性能。2023年5月在中国气象局云降水物理与人工影响天气重点开放实验室开展催化剂雾室及静态检测试验, 评估9种典型粉末型吸湿性催化剂的消雾能力及吸湿特性。结果表明:无机盐类催化剂消雾所需时间最短, 多孔复合材料催化剂效果也较好, 而改性淀粉、分子筛、有机膨润土及钠基膨润土消雾效果不明显。在常温常湿环境下, CaCl2的静态吸湿能力最强, 其次是多孔复合材料, 复合盐的吸湿性也较强, 其他催化剂吸湿性不明显;在高湿环境下, 膨润土类催化剂及分子筛吸湿性仍不佳, NaCl、多孔复合材料的吸湿能力明显高于其他催化剂。各种催化剂在雾室与静态检测试验的性能基本一致。
  • 图  1  造雾系统生成雾滴的谱特征

    Fig. 1  Spectrum characteristics of fog droplets formed by fogging system

    图  2  造雾系统生成雾滴的特征

    Fig. 2  Characteristics of fog droplets formed by fogging system

    图  3  雾室透光度变化背景试验

    (红色点划线表示75%透光度)

    Fig. 3  Changes in transmittance of background experiments

    (the red chain line denotes 75% transmittance)

    图  4  催化剂播撒后透光度变化

    Fig. 4  Changes in transmittance after catalysts seeding

    图  5  催化剂称重试验结果

    Fig. 5  Weighing test results of catalysts

    图  6  催化剂不同湿度条件下的吸湿效率

    Fig. 6  Hygroscopic efficiency of catalysts under different humidity conditions

    图  7  催化剂粒子在不同时间的粒子微观特征

    Fig. 7  Changes in microscopic characteristics of catalyst particles at different time

    表  1  9种催化剂的主要成分、粒径及来源

    Table  1  Main compositions, sizes and sources of 9 catalysts

    序号 样品 粒径/μm 来源
    1 PCM-10 10±5 天津科技大学
    2 PCM-100 100±50 天津科技大学
    3 分子筛 10±5 吉林大学
    4 复合盐 30±10 陕西中天火箭技术股份有限公司
    5 改性淀粉 150±50 北京驻盟科技有限公司
    6 有机膨润土 10±5 自制
    7 钠基膨润土 10±5 自制
    8 NaCl 10±5 自制
    9 CaCl2 10±5 自制
    下载: 导出CSV
  • [1] 王泽林, 周旭, 吴俊辉, 等.一次飞机严重积冰的天气条件和云微物理特征.应用气象学报, 2022, 33(5):555-567. doi:  10.11898/1001-7313.20220504

    Wang Z L, Zhou X, Wu J H, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. doi:  10.11898/1001-7313.20220504
    [2] 郭学良. 大气物理与人工影响天气. 北京: 气象出版社, 2010.

    Guo X L. Atmospheric Physics and Weather Modification. Beijing: China Meteorological Press, 2010.
    [3] 宋润田, 王伟民. 首都机场人工消雾试验的效果检验. 气象科技, 2000, 28(3): 42-45.

    Song R T, Wang W M. Effect test of artificial fog elimination test at Capital Airport. Meteor Sci Technol, 2000, 28(3): 42-45.
    [4] 马新成, 韩光, 焦生远, 等. 天津一次强浓雾过程和液氮播入冷雾后微结构的变化. 气象科技, 2015, 43(5): 958-963. doi:  10.3969/j.issn.1671-6345.2015.05.028

    Ma X C, Han G, Jiao S Y, et al. Microstructure characteristics of a heavy cold fog before and after liquid nitrogen seeding. Meteor Sci Technol, 2015, 43(5): 958-963. doi:  10.3969/j.issn.1671-6345.2015.05.028
    [5] 张良, 王式功, 尚可政, 等. 中国人工增雨研究进展. 干旱气象, 2006, 24(4): 73-81.

    Zhang L, Wang S G, Shang K Z, et al. Review of researches on rainfall enhancement in China. Arid Meteor, 2006, 24(4): 73-81.
    [6] 郑国光, 陈跃, 王鹏飞, 等. 人工影响天气研究问题. 北京: 气象出版社, 2005: 20-21.

    Zheng G G, Chen Y, Wang P F, et al. Research Issues on Weather Modification. Beijing: China Meteorological Press, 2005: 20-21.
    [7] 鲁鲜, 郭凤霞, 吴泽怡, 等. 播撒碘化银人工消雹对冰雹云微物理过程和起放电过程影响的数值模拟研究. 高原气象, 2024, 43(1): 199-216.

    Lu X, Guo F X, Wu Z Y, et al. Numerical simulation research on the effect of hail suppression by AgI seeding on microphysical process and the charge and discharge of hail cloud. Plateau Meteor, 2024, 43(1): 199-216.
    [8] 胡淑萍, 林文, 林长城, 等. 2014—2022年古田人工增雨随机试验物理检验. 应用气象学报, 2023, 34(6): 706-716. doi:  10.11898/1001-7313.20230606

    Hu S P, Lin W, Lin C C, et al. Physical inspection of randomized trial for the artificial rain enhancement experiment at Gutian from 2014 to 2022. J Appl Meteor Sci, 2023, 34(6): 706-716. doi:  10.11898/1001-7313.20230606
    [9] 楼小凤, 傅瑜, 苏正军. 人工影响天气碘化银催化剂研究进展. 应用气象学报, 2021, 32(2): 146-159. doi:  10.11898/1001-7313.20210202

    Lou X F, Fu Y, Su Z J. Advances of silver iodide seeding agents for weather modification. J Appl Meteor Sci, 2021, 32(2): 146-159. doi:  10.11898/1001-7313.20210202
    [10] 郑国光, 郭学良. 人工影响天气科学技术现状及发展趋势. 中国工程科学, 2012, 14(9): 20-27.

    Zheng G G, Guo X L. Status and development of sciences and technology for weather modification. Eng Sci, 2012, 14(9): 20-27.
    [11] 楼小凤, 师宇, 李集明. 云降水和人工影响天气催化数值模式的发展及应用. 气象科技进展, 2016, 6(3): 75-82.

    Lou X F, Shi Y, Li J M. Development and application of the cloud and seeding models in weather modification. Adv Meteor Sci Technol, 2016, 6(3): 75-82.
    [12] 郭学良, 方春刚, 卢广献, 等. 2008—2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601

    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [13] 苏正军, 郭学良, 诸葛杰, 等. 云雾物理膨胀云室研制及参数测试. 应用气象学报, 2019, 30(6): 722-730. doi:  10.11898/1001-7313.20190608

    Su Z J, Guo X L, Zhuge J, et al. Developing and testing of an expansion cloud chamber for cloud physics research. J Appl Meteor Sci, 2019, 30(6): 722-730. doi:  10.11898/1001-7313.20190608
    [14] 肖辉, 舒未希, 付丹红, 等. 声波对气溶胶和云雾粒子聚并影响研究进展. 应用气象学报, 2021, 32(3): 257-271. doi:  10.11898/1001-7313.20210301

    Xiao H, Shu W X, Fu D H, et al. A review on the effect of sound waves upon the coalescence of aerosol and cloud and fog particles. J Appl Meteor Sci, 2021, 32(3): 257-271. doi:  10.11898/1001-7313.20210301
    [15] 高洋, 蔡淼, 曹治强, 等. "21·7" 河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604

    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [16] 齐道日娜, 何立富. 2022年我国夏季极端高温阶段性特征及成因. 应用气象学报, 2023, 34(4): 385-399. doi:  10.11898/1001-7313.20230401

    Chyi D, He L F. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J Appl Meteor Sci, 2023, 34(4): 385-399. doi:  10.11898/1001-7313.20230401
    [17] 杨小波, 陈丽娟, 刘芸芸. 我国降水和气温的分级概率时空分布特征. 应用气象学报, 2011, 22(5): 513-524. http://qikan.camscma.cn/article/id/20110501

    Yang X B, Chen L J, Liu Y Y. Spatial and temporal distributions of probability classification of precipitation and temperature anomalies over China. J Appl Meteor Sci, 2011, 22(5): 513-524. http://qikan.camscma.cn/article/id/20110501
    [18] 林纾, 李红英, 黄鹏程, 等. 2022年夏季我国高温干旱特征及其环流形势分析. 干旱气象, 2022, 40(5): 748-763.

    Lin S, Li H Y, Huang P C, et al. Characteristics of high temperature, drought and circulation situation in summer 2022 in China. J Arid Meteor, 2022, 40(5): 748-763.
    [19] 李睿劼, 黄梦宇, 丁德平, 等. 基于70 m3膨胀云室的暖云滴谱试验研究. 应用气象学报, 2023, 34(5): 540-551. doi:  10.11898/1001-7313.20230503

    Li R J, Huang M Y, Ding D P, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. doi:  10.11898/1001-7313.20230503
    [20] 苏正军, 郑国光, 酆大雄. 吸湿性物质催化云雨的研究进展. 高原气象, 2009, 28(1): 227-232.

    Su Z J, Zheng G G, Feng D X. The review of hygroscopic seeding. Plateau Meteor, 2009, 28(1): 227-232.
    [21] 王伟民, 卢伟, 黄培强, 等. 几种消暖云(雾)催化剂性能的实验研究. 气象科学, 2000, 20(4): 478-486.

    Wang W M, Lu W, Huang P Q, et al. An experimental study on specific property of several catalytic agent applied in artificial warm cloud and fog dissipation. Sci Meteor Sinica, 2000, 20(4): 478-486.
    [22] 邢峰华, 黄菲婷, 李光伟, 等. 海南岛中部山区暖云人工增雨催化试验物理效果分析. 干旱气象, 2023, 41(1): 114-122.

    Xing F H, Huang F T, Li G W, et al. Physical effect analysis of warm cloud-seeding experiment for artificial precipitation enhancement in central mountain areas of Hainan Island. J Arid Meteor, 2023, 41(1): 114-122.
    [23] Houghton H G, Radford W. On the Local Dissipation of Natural Fog. Cambridge and Woods Hole, 1938. DOI:  10.1575/1912/1094.
    [24] 金华, 何晖, 张蔷, 等. 人工消雾试验中的雾微物理响应. 热带气象学报, 2012, 28(2): 228-236.

    Jin H, He H, Zhang Q, et al. Analyses of a microphysical response to the seeding in two artificial dissipation cases of fog. J Trop Meteor, 2012, 28(2): 228-236.
    [25] Kunkel B A, Silverman B A. A comparison of the warm fog clearing capabilities of some hygroscopic materials. J Appl Meteor, 1970, 9(4): 634-638.
    [26] 叶家东. 人工凝结核的实验研究. 气象学报, 1962, 20(3): 232-239.

    Ye J D. Experimental study on artificial condensation nucleus. Acta Meteor Sinica, 1962, 20(3): 232-239.
    [27] 李炎辉, 黄涛, 张霞. 几种新的暖云催化剂的室内试验简况. 气象, 1982, 8(11): 35-37.

    Li Y H, Huang T, Zhang X. Brief introduction of laboratory tests of several new warm cloud catalysts. Meteor Mon, 1982, 8(11): 35-37.
    [28] 高建秋, 王广河, 关立友, 等. 新型消暖雾催化剂与传统吸湿性催化剂消雾性能的室内对比试验. 干旱气象, 2008, 26(2): 67-73.

    Gao J Q, Wang G H, Guan L Y, et al. Experiment on the capability of a new warm fog dissipation agent in the laboratory. Arid Meteor, 2008, 26(2): 67-73.
    [29] 党娟, 苏正军, 房文, 等. 几种粉末型吸湿性催化剂的试验研究. 气象科技, 2017, 45(2): 398-404.

    Dang J, Su Z J, Fang W, et al. Laboratory study of several powder-type hygroscopic catalysts. Meteor Sci Technol, 2017, 45(2): 398-404.
    [30] Jiusto J E, Pilié R J, Kocmond W C. Fog modification with giant hygroscopic nuclei. J Appl Meteor, 1968, 7(5): 860-869.
    [31] 姚展予. 中国气象科学研究院人工影响天气研究进展回顾. 应用气象学报, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127

    Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127
    [32] 张景红, 孙海燕, 曲金华, 等. 新型暖云催化剂吸湿性能试验研究. 干旱气象, 2019, 37(1): 153-158.

    Zhang J H, Sun H Y, Qu J H, et al. Test research on the water absorption properties of new warm cloud seeding catalyst. J Arid Meteor, 2019, 37(1): 153-158.
    [33] 李斌, 陈魁, 杨璟, 等. 基于人工影响天气技术的石河子冬季城市空气质量改善试验效果统计分析. 环境科学学报, 2021, 41(11): 4396-4405.

    Li B, Chen K, Yang J, et al. Statistical analysis of the effect of wintertime air quality improvement using weather modification technology in Shihezi. Acta Sci Circumstantiae, 2021, 41(11): 4396-4405.
    [34] Wu Y, Wang B W, Jia Q Z, et al. Study on Water Evaporation Retardants with Abilities of Anti-environmental Interference//2009 International Conference on Environmental Science and Information Application Technology. IEEE, 2009: 183-185.
    [35] Bermeo M, Hadri N E, Ravaux F, et al. Adsorption capacities of hygroscopic materials based on NaCl-TiO2 and NaCl-SiO2 core/shell particles. J Nanotechnol, 2020. DOI:  10.1155/2020/3683629.
    [36] Tai Y L, Liang H R, Zaki A, et al. Core/shell microstructure induced synergistic effect for efficient water-droplet formation and cloud-seeding application. ACS Nano, 2017, 11(12): 12318-12325.
    [37] 方春刚, 郭学良. 华北一次浓雾过程爆发性增强的微物理特征. 应用气象学报, 2019, 30(6): 700-709. doi:  10.11898/1001-7313.20190606

    Fang C G, Guo X L. The microphysical structure of a heavy fog event in North China. J Appl Meteor Sci, 2019, 30(6): 700-709. doi:  10.11898/1001-7313.20190606
    [38] Liu D Y, Pu M J, Yang J, et al. Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006. Acta Meteor Sinica, 2009, 67(1): 147-157.
  • 加载中
图(7) / 表(1)
计量
  • 摘要浏览量:  88
  • HTML全文浏览量:  32
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-17
  • 修回日期:  2024-08-19
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回