Fog Chamber and Static Detection of Typical Powdered Hygroscopic Catalysts
-
摘要: 暖云催化剂在人工影响天气暖云催化降水和暖性云雾消除方面应用前景广阔, 近年开发的各类新型材料有望在暖云催化中使用, 但目前仍缺少效果理想的制剂配方, 亟需在相同试验条件下对比各类吸湿性催化剂的性能。2023年5月在中国气象局云降水物理与人工影响天气重点开放实验室开展催化剂雾室及静态检测试验, 评估9种典型粉末型吸湿性催化剂的消雾能力及吸湿特性。结果表明:无机盐类催化剂消雾所需时间最短, 多孔复合材料催化剂效果也较好, 而改性淀粉、分子筛、有机膨润土及钠基膨润土消雾效果不明显。在常温常湿环境下, CaCl2的静态吸湿能力最强, 其次是多孔复合材料, 复合盐的吸湿性也较强, 其他催化剂吸湿性不明显;在高湿环境下, 膨润土类催化剂及分子筛吸湿性仍不佳, NaCl、多孔复合材料的吸湿能力明显高于其他催化剂。各种催化剂在雾室与静态检测试验的性能基本一致。Abstract: Catalysts for warm cloud seeding have significant potential for applications in warm cloud catalytic precipitation and fog elimination. In recent years, numerous innovative materials have been developed, each with the potential to be used in warm cloud catalysis. However, a universally recognized ideal formulation has not yet been established. It is necessary to conduct a scientific analysis on the performance of various hygroscopic catalysts under consistent experimental conditions.Therefore, 9 types of typical powdered hygroscopic catalysts are collected, and experiments involving fog chamber and static testing of catalysts are conducted at CMA Key Laboratory of Cloud-precipitation Physics and Weather Modification in May 2023. Fog elimination capabilities and hygroscopic characteristics of various catalysts are comprehensively evaluated and compared. Results indicate that, under the same fog conditions, salt type catalysts demonstrate the shortest time to eliminate fog, and porous composite materials (PCM-100 and PCM-10) are also effective, while fog elimination effects of modified starch, molecular sieves, organic bentonite and sodium bentonite are not obvious after seeding. In static detection, under normal temperature and humidity conditions, CaCl2 exhibits the strongest static hygroscopicity, followed by porous composite materials such as PCM-100 and PCM-10. Composite salt catalysts exhibit strong hygroscopic absorption, whereas the static hygroscopic absorption capacity of other catalysts is not as pronounced. In high humidity conditions, bentonite and molecular sieve catalysts still do not exhibit moisture absorption characteristics. The hygroscopic abilities of CaCl2, PCM-100, and PCM-10 are significantly higher than those of other catalysts. The performance of various catalysts in the fog chamber experiment and static detection is basically consistent.Microstructures of various catalysts with strong hygroscopic properties do not show significant changes after 30 minutes. PCM-10 primarily exists in the form of liquid droplets after standing for 5 minutes and can continue to provide hydration. PCM-100 remains in irregular crystal form after 5 minutes and transforms into droplets after 30 minutes. CaCl2 absorbs moisture rapidly under the microscope, initially existing as liquid droplets for 5 minutes. Subsequently, there are no significant changes, primarily small droplets. Complex salts always form crystals, while the size of liquid droplets formed is larger.It should be noted that, although the hygroscopicity and the ability of fog elimination of various catalysts are important indicators, the dispersibility, corrosiveness and ease of preparation and storage of the catalyst are also important parameters of whether they can be used as efficient warm cloud catalysts. Follow-up research and evaluation of various catalysts will be conducted.
-
表 1 9种催化剂的主要成分、粒径及来源
Table 1 Main compositions, sizes and sources of 9 catalysts
序号 样品 粒径/μm 来源 1 PCM-10 10±5 天津科技大学 2 PCM-100 100±50 天津科技大学 3 分子筛 10±5 吉林大学 4 复合盐 30±10 陕西中天火箭技术股份有限公司 5 改性淀粉 150±50 北京驻盟科技有限公司 6 有机膨润土 10±5 自制 7 钠基膨润土 10±5 自制 8 NaCl 10±5 自制 9 CaCl2 10±5 自制 -
[1] 王泽林, 周旭, 吴俊辉, 等.一次飞机严重积冰的天气条件和云微物理特征.应用气象学报, 2022, 33(5):555-567. doi: 10.11898/1001-7313.20220504Wang Z L, Zhou X, Wu J H, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. doi: 10.11898/1001-7313.20220504 [2] 郭学良. 大气物理与人工影响天气. 北京: 气象出版社, 2010.Guo X L. Atmospheric Physics and Weather Modification. Beijing: China Meteorological Press, 2010. [3] 宋润田, 王伟民. 首都机场人工消雾试验的效果检验. 气象科技, 2000, 28(3): 42-45.Song R T, Wang W M. Effect test of artificial fog elimination test at Capital Airport. Meteor Sci Technol, 2000, 28(3): 42-45. [4] 马新成, 韩光, 焦生远, 等. 天津一次强浓雾过程和液氮播入冷雾后微结构的变化. 气象科技, 2015, 43(5): 958-963. doi: 10.3969/j.issn.1671-6345.2015.05.028Ma X C, Han G, Jiao S Y, et al. Microstructure characteristics of a heavy cold fog before and after liquid nitrogen seeding. Meteor Sci Technol, 2015, 43(5): 958-963. doi: 10.3969/j.issn.1671-6345.2015.05.028 [5] 张良, 王式功, 尚可政, 等. 中国人工增雨研究进展. 干旱气象, 2006, 24(4): 73-81.Zhang L, Wang S G, Shang K Z, et al. Review of researches on rainfall enhancement in China. Arid Meteor, 2006, 24(4): 73-81. [6] 郑国光, 陈跃, 王鹏飞, 等. 人工影响天气研究问题. 北京: 气象出版社, 2005: 20-21.Zheng G G, Chen Y, Wang P F, et al. Research Issues on Weather Modification. Beijing: China Meteorological Press, 2005: 20-21. [7] 鲁鲜, 郭凤霞, 吴泽怡, 等. 播撒碘化银人工消雹对冰雹云微物理过程和起放电过程影响的数值模拟研究. 高原气象, 2024, 43(1): 199-216.Lu X, Guo F X, Wu Z Y, et al. Numerical simulation research on the effect of hail suppression by AgI seeding on microphysical process and the charge and discharge of hail cloud. Plateau Meteor, 2024, 43(1): 199-216. [8] 胡淑萍, 林文, 林长城, 等. 2014—2022年古田人工增雨随机试验物理检验. 应用气象学报, 2023, 34(6): 706-716. doi: 10.11898/1001-7313.20230606Hu S P, Lin W, Lin C C, et al. Physical inspection of randomized trial for the artificial rain enhancement experiment at Gutian from 2014 to 2022. J Appl Meteor Sci, 2023, 34(6): 706-716. doi: 10.11898/1001-7313.20230606 [9] 楼小凤, 傅瑜, 苏正军. 人工影响天气碘化银催化剂研究进展. 应用气象学报, 2021, 32(2): 146-159. doi: 10.11898/1001-7313.20210202Lou X F, Fu Y, Su Z J. Advances of silver iodide seeding agents for weather modification. J Appl Meteor Sci, 2021, 32(2): 146-159. doi: 10.11898/1001-7313.20210202 [10] 郑国光, 郭学良. 人工影响天气科学技术现状及发展趋势. 中国工程科学, 2012, 14(9): 20-27.Zheng G G, Guo X L. Status and development of sciences and technology for weather modification. Eng Sci, 2012, 14(9): 20-27. [11] 楼小凤, 师宇, 李集明. 云降水和人工影响天气催化数值模式的发展及应用. 气象科技进展, 2016, 6(3): 75-82.Lou X F, Shi Y, Li J M. Development and application of the cloud and seeding models in weather modification. Adv Meteor Sci Technol, 2016, 6(3): 75-82. [12] 郭学良, 方春刚, 卢广献, 等. 2008—2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601 [13] 苏正军, 郭学良, 诸葛杰, 等. 云雾物理膨胀云室研制及参数测试. 应用气象学报, 2019, 30(6): 722-730. doi: 10.11898/1001-7313.20190608Su Z J, Guo X L, Zhuge J, et al. Developing and testing of an expansion cloud chamber for cloud physics research. J Appl Meteor Sci, 2019, 30(6): 722-730. doi: 10.11898/1001-7313.20190608 [14] 肖辉, 舒未希, 付丹红, 等. 声波对气溶胶和云雾粒子聚并影响研究进展. 应用气象学报, 2021, 32(3): 257-271. doi: 10.11898/1001-7313.20210301Xiao H, Shu W X, Fu D H, et al. A review on the effect of sound waves upon the coalescence of aerosol and cloud and fog particles. J Appl Meteor Sci, 2021, 32(3): 257-271. doi: 10.11898/1001-7313.20210301 [15] 高洋, 蔡淼, 曹治强, 等. "21·7" 河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604 [16] 齐道日娜, 何立富. 2022年我国夏季极端高温阶段性特征及成因. 应用气象学报, 2023, 34(4): 385-399. doi: 10.11898/1001-7313.20230401Chyi D, He L F. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J Appl Meteor Sci, 2023, 34(4): 385-399. doi: 10.11898/1001-7313.20230401 [17] 杨小波, 陈丽娟, 刘芸芸. 我国降水和气温的分级概率时空分布特征. 应用气象学报, 2011, 22(5): 513-524. http://qikan.camscma.cn/article/id/20110501Yang X B, Chen L J, Liu Y Y. Spatial and temporal distributions of probability classification of precipitation and temperature anomalies over China. J Appl Meteor Sci, 2011, 22(5): 513-524. http://qikan.camscma.cn/article/id/20110501 [18] 林纾, 李红英, 黄鹏程, 等. 2022年夏季我国高温干旱特征及其环流形势分析. 干旱气象, 2022, 40(5): 748-763.Lin S, Li H Y, Huang P C, et al. Characteristics of high temperature, drought and circulation situation in summer 2022 in China. J Arid Meteor, 2022, 40(5): 748-763. [19] 李睿劼, 黄梦宇, 丁德平, 等. 基于70 m3膨胀云室的暖云滴谱试验研究. 应用气象学报, 2023, 34(5): 540-551. doi: 10.11898/1001-7313.20230503Li R J, Huang M Y, Ding D P, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. doi: 10.11898/1001-7313.20230503 [20] 苏正军, 郑国光, 酆大雄. 吸湿性物质催化云雨的研究进展. 高原气象, 2009, 28(1): 227-232.Su Z J, Zheng G G, Feng D X. The review of hygroscopic seeding. Plateau Meteor, 2009, 28(1): 227-232. [21] 王伟民, 卢伟, 黄培强, 等. 几种消暖云(雾)催化剂性能的实验研究. 气象科学, 2000, 20(4): 478-486.Wang W M, Lu W, Huang P Q, et al. An experimental study on specific property of several catalytic agent applied in artificial warm cloud and fog dissipation. Sci Meteor Sinica, 2000, 20(4): 478-486. [22] 邢峰华, 黄菲婷, 李光伟, 等. 海南岛中部山区暖云人工增雨催化试验物理效果分析. 干旱气象, 2023, 41(1): 114-122.Xing F H, Huang F T, Li G W, et al. Physical effect analysis of warm cloud-seeding experiment for artificial precipitation enhancement in central mountain areas of Hainan Island. J Arid Meteor, 2023, 41(1): 114-122. [23] Houghton H G, Radford W. On the Local Dissipation of Natural Fog. Cambridge and Woods Hole, 1938. DOI: 10.1575/1912/1094. [24] 金华, 何晖, 张蔷, 等. 人工消雾试验中的雾微物理响应. 热带气象学报, 2012, 28(2): 228-236.Jin H, He H, Zhang Q, et al. Analyses of a microphysical response to the seeding in two artificial dissipation cases of fog. J Trop Meteor, 2012, 28(2): 228-236. [25] Kunkel B A, Silverman B A. A comparison of the warm fog clearing capabilities of some hygroscopic materials. J Appl Meteor, 1970, 9(4): 634-638. [26] 叶家东. 人工凝结核的实验研究. 气象学报, 1962, 20(3): 232-239.Ye J D. Experimental study on artificial condensation nucleus. Acta Meteor Sinica, 1962, 20(3): 232-239. [27] 李炎辉, 黄涛, 张霞. 几种新的暖云催化剂的室内试验简况. 气象, 1982, 8(11): 35-37.Li Y H, Huang T, Zhang X. Brief introduction of laboratory tests of several new warm cloud catalysts. Meteor Mon, 1982, 8(11): 35-37. [28] 高建秋, 王广河, 关立友, 等. 新型消暖雾催化剂与传统吸湿性催化剂消雾性能的室内对比试验. 干旱气象, 2008, 26(2): 67-73.Gao J Q, Wang G H, Guan L Y, et al. Experiment on the capability of a new warm fog dissipation agent in the laboratory. Arid Meteor, 2008, 26(2): 67-73. [29] 党娟, 苏正军, 房文, 等. 几种粉末型吸湿性催化剂的试验研究. 气象科技, 2017, 45(2): 398-404.Dang J, Su Z J, Fang W, et al. Laboratory study of several powder-type hygroscopic catalysts. Meteor Sci Technol, 2017, 45(2): 398-404. [30] Jiusto J E, Pilié R J, Kocmond W C. Fog modification with giant hygroscopic nuclei. J Appl Meteor, 1968, 7(5): 860-869. [31] 姚展予. 中国气象科学研究院人工影响天气研究进展回顾. 应用气象学报, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127 [32] 张景红, 孙海燕, 曲金华, 等. 新型暖云催化剂吸湿性能试验研究. 干旱气象, 2019, 37(1): 153-158.Zhang J H, Sun H Y, Qu J H, et al. Test research on the water absorption properties of new warm cloud seeding catalyst. J Arid Meteor, 2019, 37(1): 153-158. [33] 李斌, 陈魁, 杨璟, 等. 基于人工影响天气技术的石河子冬季城市空气质量改善试验效果统计分析. 环境科学学报, 2021, 41(11): 4396-4405.Li B, Chen K, Yang J, et al. Statistical analysis of the effect of wintertime air quality improvement using weather modification technology in Shihezi. Acta Sci Circumstantiae, 2021, 41(11): 4396-4405. [34] Wu Y, Wang B W, Jia Q Z, et al. Study on Water Evaporation Retardants with Abilities of Anti-environmental Interference//2009 International Conference on Environmental Science and Information Application Technology. IEEE, 2009: 183-185. [35] Bermeo M, Hadri N E, Ravaux F, et al. Adsorption capacities of hygroscopic materials based on NaCl-TiO2 and NaCl-SiO2 core/shell particles. J Nanotechnol, 2020. DOI: 10.1155/2020/3683629. [36] Tai Y L, Liang H R, Zaki A, et al. Core/shell microstructure induced synergistic effect for efficient water-droplet formation and cloud-seeding application. ACS Nano, 2017, 11(12): 12318-12325. [37] 方春刚, 郭学良. 华北一次浓雾过程爆发性增强的微物理特征. 应用气象学报, 2019, 30(6): 700-709. doi: 10.11898/1001-7313.20190606Fang C G, Guo X L. The microphysical structure of a heavy fog event in North China. J Appl Meteor Sci, 2019, 30(6): 700-709. doi: 10.11898/1001-7313.20190606 [38] Liu D Y, Pu M J, Yang J, et al. Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006. Acta Meteor Sinica, 2009, 67(1): 147-157.