Variations of Ozone Concentration with Its Impacts on Cities of Xizang
-
摘要: 在强紫外线辐射和高臭氧(O3)背景值下, 人为排放源集中的青藏高原城市地区大气O3质量浓度长期变化及其潜在环境影响备受关注。该研究收集2015—2023年西藏7个城市的O3质量浓度数据, 分析其变化趋势, 并借助13个O3风险评价指标评估O3对当地居民健康和生态植被的潜在威胁。结果表明:O3质量浓度在拉萨明显高于南部的山南和日喀则, 与北部的那曲相当, 高于西部的阿里以及东部的林芝和昌都。昌都O3峰值出现在6月, 林芝O3峰值出现在3—4月, 其他城市则出现在5月。阿里、那曲、拉萨和林芝的O3质量浓度呈年际波动, 山南、日喀则和昌都的O3质量浓度呈显著上升趋势。健康与生态O3风险指标与日间O3质量浓度紧密相关。相比西藏其他城市, 拉萨的O3暴露带来的影响尤为突出, 部分风险指标已突破安全阈值。在高O3背景值基础上, 由于人为排放的不断增加, 西藏城市须采取有效的O3预防和控制措施, 以长期维护青藏高原城市地区大气环境质量。Abstract: Under the harsh environmental conditions characterized by intense ultraviolet radiation and elevated ozone (O3) background, the temporal dynamics of atmospheric O3 concentrations and their associated environmental ramifications in the densely populated and emission-concentrated urban regions of the Tibetan Plateau have garnered considerable scientific interest. This comprehensive study meticulously compiles O3 concentration data spanning 2015 to 2023 from 7 cities of Xizang, conducting rigorous trend analyses and employing a robust suite of 13 risk assessment indicators to gauge the implications for human health and ecological vegetation. It shows that O3 concentrations of these cities demonstrate significant geographical variations, with the central city of Lhasa recording the highest O3 mass concentration, while those in the southern cities of Shannan and Rikaze are relatively lower. O3 concentrations of Nagqu, located in the north, are comparable to those of Lhasa and are significantly higher than those of Ali in the west, as well as those of Linzhi and Changdu in the east Plateau. O3 concentrations of Changdu and Linzhi peak in June and March-April, respectively, while the other cities reach their peaks in May. Since 2015, interannual variations in O3 concentrations of Ali, Nagqu, Lhasa, and Linzhi do not show statistically significant trends. In contrast, Shannan, Rikaze, and Changdu experience significant increases in concentration. Specifically, AMDA8_max and AMDA8_4th in Rikaze and Changdu increase significantly, whereas the other cities show decreasing trends. Similarly, both NDGT90 and NDGT70 exhibit comparable trends. SOMO35 indicator, which indicates human health risks, and AOT40 and W126 indicators, which are closely related to ecological vegetation and crop growth, show a high degree of consistency in their trends relative to diurnal O3 concentration changes. In Lhasa, values of these indicators exceed safety thresholds, particularly during spring and summer, highlighting the combined effect of high background O3 concentrations in the Plateau and intensified O3 photochemical formation due to anthropogenic emissions, posing potential threats to human health and ecosystems. Although the current O3-related risk indicators of Rikaze and Changdu have not yet reached critical levels, their significant upward trends should not be overlooked. With the continuous rise in anthropogenic pollutant emissions in the region, adverse effects of O3 photochemical formation are anticipated to intensify. Therefore, there is an urgent need to enhance monitoring and assessment in these cities and to implement effective measures to mitigate or control O3 pollution, thereby safeguarding regional environmental security and promoting sustainable development.
-
Key words:
- Xizang;
- cities;
- O3;
- health effects;
- ecological risks
-
表 1 O3风险评价指标
Table 1 Definition of O3 evaluation metrics
指标名称 简称 单位 主要用途 文献来源 所有小时O3质量浓度年平均值 AAVG μg·m-3 环境变化 [14] 所有白天(10:00—21:59)小时O3质量浓度年平均值 AdAVG μg·m-3 环境变化 [14] 不同季节所有小时O3质量浓度平均值 SAVG μg·m-3 环境变化 [14] 不同季节白天(10:00—21:59)小时O3质量浓度平均值 SdAVG μg·m-3 环境变化 [14] 日连续8 h平均O3质量浓度最大值 MDA8 μg·m-3 人体健康 日连续8 h平均O3质量浓度年最大值 AMDA8_max μg·m-3 人体健康 [14] 日连续8 h O3质量浓度年第4高值 AMDA8_4th μg·m-3 人体健康 [14] 日连续8 h O3质量浓度最大值与69 μg·m-3正差值的年总和 SOMO35 μg·m-3·d 人体健康 [21] 日连续8 h O3质量浓度最大值与69 μg·m-3之间的正差值的季节总和 SSOMO35 μg·m-3·d 人体健康 [21] 每年MDA8大于176 μg·m-3的日数 NDGT90 d 人体健康 [14] 每年MDA8大于137 μg·m-3的日数 NDGT70 d 人体健康 [14] 3个月内所有白天(10:00—21:59)小时O3质量浓度与78 μg·m-3正差值总和 AOT40 μg·m-3·h 生态植被 [22] 3个月内所有白天(10:00—21:59)小时O3浓度质量加权总和 W126 μg·m-3·h 生态植被 [23] 表 2 西藏7个城市的年平均O3质量浓度变化(单位:μg·m-3)
Table 2 Variations in annual O3 mass concentrations of 7 cities in Xizang(unit:μg·m-3)
年份 阿里 那曲 拉萨 山南 日喀则 林芝 昌都 2015 63.3±29.2 64.8±31.7 80.1±33.1 75.2±27.4 52.3±27.8 68.0±28.8 58.4±25.1 2016 67.4±36.4 75.4±28.6 77.2±38.6 78.2±36.6 33.3±22.3 62.1±28.4 42.9±18.0 2017 64.5±33.9 84.4±33.3 73.9±31.5 73.7±31.7 46.0±21.4 69.0±29.0 89.7±31.7 2018 64.7±32.1 85.8±31.9 80.7±32.5 82.1±31.7 53.7±24.3 75.2±30.0 79.9±32.1 2019 57.2±28.4 78.8±26.8 75.8±29.8 79.3±32.5 56.6±24.3 67.6±25.3 78.6±30.2 2020 60.0±25.9 74.6±26.3 72.1±28.8 80.1±29.8 61.5±24.7 65.0±25.9 89.9±32.7 2021 66.4±27.6 74.3±25.5 73.9±27.0 80.5±29.6 72.9±31.0 62.1±25.1 96.4±30.8 2022 68.6±26.6 83.9±27.0 82.3±26.1 84.6±29.2 77.0±29.2 68.4±24.1 98.2±29.8 2023 67.8±29.0 80.5±26.8 87.2±33.1 82.7±31.2 80.3±27.8 71.9±28.0 92.5±29.2 表 3 西藏7个城市不同O3指标的年变化趋势
Table 3 Annual trends in different O3 metrics of 7 cities in Xizang
城市 AAVG/(μg·m-3·a-1) AdAVG/(μg·m-3·a-1) AMDA8_max/(μg·m-3·a-1) AMDA8_4th/(μg·m-3·a-1) SOMO35/(μg·m-3·a-1) NDGT90/(d·a-1) NDGT70/(d·a-1) 阿里 0.18 -0.19 -6.50* -0.66 -120 -0* -2 那曲 0.48 0.39 -1.34 -1.29 9 -0 -1 拉萨 0.30 -0.02 -2.01* -1.32 -30 -1 -2 山南 0.51* 0.50* -1.49 -0.12 121 -0 2 日喀则 2.60* 2.76* 2.66 2.82* 613* -0 2* 林芝 0.09 -0.08 -2.82 -0.87 -43 -0 -1 昌都 2.76* 3.02* 3.53 3.56* 731* 1 7* 注:* 表示达到0.05显著性水平。 表 4 西藏7个城市的不同季节O3指标的变化趋势
Table 4 Trends of O3 metrics in different seasons of 7 cities in Xizang
城市 季节 SAVG/(μg·m-3·a-1) SdAVG/(μg·m-3·a-1) SSOMO35/(μg·m-3·d·a-1) AOT40/(μg·m-3·h·a-1) W126/(μg·m-3·h·a-1) 阿里 春 0.13 -0.25 -34 -216 -551 夏 -0.01 -0.37 -55 -261 -366 秋 0.28 -0.17 -29 -157 -87 冬 -0.06 -0.32 -45 -261 -178 那曲 春 1.34 1.34 84 729 500 夏 -0.23 -0.36 -34 -279 -453 秋 -0.08 -0.31 -35 -218 -169 冬 -0.46 -0.57 -80 -484 -350 拉萨 春 0.01 -0.38 -46 -133 -614 夏 0.07 -0.23 -26 -206 -366 秋 0.81 0.33 24 229 195 冬 -0.11 -0.12 -37 -189 -110 山南 春 0.62 0.69 58 776 938 夏 0.64 0.67 44 411 519 秋 0.48 0.35 27 258* 169 冬 -0.35 -0.18 -50 -261 -228 日喀则 春 2.33* 2.41* 211* 1832* 1849* 夏 3.00* 3.31* 208* 1639* 1686* 秋 2.75* 2.79* 145* 777 539* 冬 2.07* 2.11* 59 278 166 林芝 春 0.16 -0.01 -6 80 -111 夏 -0.01 -0.26 -27 -194 -215 秋 -0.01 -0.18 -16 -112 -48 冬 -0.38 -0.41 -51 -280 -188 昌都 春 2.56 2.75 207* 1931* 2370* 夏 3.87* 4.26* 338* 3015* 4169* 秋 2.55* 2.83* 172* 1168* 949 冬 1.75 2.06 68 399 255 注:* 表示达到0.05显著性水平。 -
[1] Feng Z Z, Hu E Z, Wang X K, et al.Ground-level O3 pollution and its impacts on food crops in China:A review. Environ Pollut, 2015, 199:42-48. doi: 10.1016/j.envpol.2015.01.016 [2] 徐晓斌. 我国霾和光化学污染观测研究进展. 应用气象学报, 2016, 27(5): 604-619. doi: 10.11898/1001-7313.20160509Xu X B. Observational study advances of haze and photochemical pollution in China. J Appl Meteor Sci, 2016, 27(5): 604-619. doi: 10.11898/1001-7313.20160509 [3] 丁国安, 郑向东, 马建中, 等. 近30年大气化学和大气环境研究回顾——纪念中国气象科学研究院成立50周年. 应用气象学报, 2006, 17(6): 796-814. http://qikan.camscma.cn/article/id/200606128Ding G A, Zheng X D, Ma J Z, et al. Review of atmospheric chemistry and environment research work in recent 30 years-In commemoration of the 50 anniversaries of CAMS establishment. J Appl Meteor Sci, 2006, 17(6): 796-814. http://qikan.camscma.cn/article/id/200606128 [4] IPCC. Summary for Policymakers//Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press, 2021. [5] Tarasick D, Galbally I E, Cooper O R, et al. Tropospheric ozone assessment report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elem Sci Anth, 2019, 7(1). DOI: 10.1525/elementa.376. [6] Vingarzan R. A review of surface ozone background levels and trends. Atmos Environ, 2004, 38(21): 3431-3442. doi: 10.1016/j.atmosenv.2004.03.030 [7] 张远航, 郑君瑜. 中国大气臭氧污染防治蓝皮书(2020年). 中国环境科学学会臭氧污染控制专业委员会, 2020.Zhang Y H, Zheng J Y. Blue Book of China's Atmospheric Ozone Pollution Prevention and Control(2020). Ozone Pollution Control Committee of the Chinese Society for Environmental Science, 2020. [8] Wang T, Xue L K, Feng Z Z, et al. Ground-level ozone pollution in China: A synthesis of recent findings on influencing factors and impacts. Environ Res Lett, 2022, 17(6). DOI: 10.1088/1748-9326/ac69fe. [9] Feng Z Z, De Marco A, Anav A, et al. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ Int, 2019, 131. DOI: 10.1016/j.envint.2019.104966. [10] Hua Q Y, Meng X, Gong J C, et al. Ozone exposure and cardiovascular disease: A narrative review of epidemiology evidence and underlying mechanisms. Fundam Res, 2024. DOI: 10.1016/j.fmre.2024.02.016. [11] 赵平, 南素兰. 气候和气候变化领域的研究进展. 应用气象学报, 2006, 17(6): 725-735. http://qikan.camscma.cn/article/id/200606121Zhao P, Nan S L. Some advances in climate and climate change research. J Appl Meteor Sci, 2006, 17(6): 725-735. http://qikan.camscma.cn/article/id/200606121 [12] 陈树, 郑向东, 林伟立, 等. 西藏当雄地基紫外线指数观测研究. 应用气象学报, 2015, 26(4): 482-491. doi: 10.11898/1001-7313.20150410Chen S, Zheng X D, Lin W L, et al. Observational study on the ground-based UVI at Dangxiong of Tibet. J Appl Meteor Sci, 2015, 26(4): 482-491. doi: 10.11898/1001-7313.20150410 [13] Lin W L, Zhu T, Song Y, et al. Photolysis of surface O3 and production potential of OH radicals in the atmosphere over the Tibetan Plateau. J Geophys Res, 2008, 113(D2). DOI: 10.1029/2007JD008831. [14] Xu X B, Lin W L, Xu W Y, et al. Long-term changes of regional ozone in China: Implications for human health and ecosystem impacts. Elem Sci Anth, 2020, 8(13): 1-27. [15] 徐祥德, 陈联寿. 青藏高原大气科学试验研究进展. 应用气象学报, 2006, 17(6): 756-772. http://qikan.camscma.cn/article/id/200606124Xu X D, Chen L S. Advances of the study on Tibetan Plateau experiment of atmospheric sciences. J Appl Meteor Sci, 2006, 17(6): 756-772. http://qikan.camscma.cn/article/id/200606124 [16] 郭蕾, 李谢辉, 刘雨亭. 城市化对川渝地区极端气候事件的影响. 应用气象学报, 2023, 34(5): 574-585. doi: 10.11898/1001-7313.20230506Guo L, Li X H, Liu Y T. Impacts of urbanization on extreme climate events in Sichuan-Chongqing Region. J Appl Meteor Sci, 2023, 34(5): 574-585. doi: 10.11898/1001-7313.20230506 [17] Guo S Z, Wang Y R, Zhang T T, et al. Volatile organic compounds in urban Lhasa: Variations, sources, and potential risks. Front Environ Sci, 2022, 10. DOI: 10.3389/fenvs.2022.941100. [18] Ran L, Lin W L, Deji Y Z, et al. Surface gas pollutants in Lhasa, a highland city of Tibet-current levels and pollution implications. Atmos Chem Phys, 2014, 14(19): 10721-10730. doi: 10.5194/acp-14-10721-2014 [19] Ye C X, Guo S Z, Lin W L, et al. Measurement report: Source apportionment and environmental impacts of volatile organic compounds(VOCs) in Lhasa, a highland city in China. Atmos Chem Phys, 2023, 23(18): 10383-10397. doi: 10.5194/acp-23-10383-2023 [20] Xu X B. Recent advances in studies of ozone pollution and impacts in China: A short review. Curr Opin Environ Sci Health, 2021, 19. DOI: 10.1016/j.coesh.2020.100225. [21] Lefohn A S, Malley C S, Smith L, et al. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem Sci Anth, 2018, 6. DOI: 10.1525/elementa.279. [22] Lefohn A S, Malley C S, Simon H, et al. Responses of human health and vegetation exposure metrics to changes in ozone concentration distributions in the European Union, United States, and China. Atmos Environ, 2017, 152: 123-145. doi: 10.1016/j.atmosenv.2016.12.025 [23] Lefohn A S, Laurence J A, Kohut R J. A comparison of indices that describe the relationship between exposure to ozone and reduction in the yield of agricultural crops. Atmos Environ, 1988, 22(6): 1229-1240. doi: 10.1016/0004-6981(88)90353-8 [24] 刘宁微, 马建中. 东亚区域对流层臭氧及其前体物的季节性关联. 应用气象学报, 2017, 28(4): 427-435. doi: 10.11898/1001-7313.20170404Liu N W, Ma J Z. Seasonal relationships between tropospheric ozone and its precursors over East Asia. J Appl Meteor Sci, 2017, 28(4): 427-435. doi: 10.11898/1001-7313.20170404 [25] Xu W Y, Lin W L, Xu X B, et al. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China-Part 1: Overall trends and characteristics. Atmos Chem Phys, 2016, 16(10): 6191-6205. doi: 10.5194/acp-16-6191-2016 [26] Zhao S P, Yu Y, Yin D Y, et al. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ Int, 2016, 86: 92-106. doi: 10.1016/j.envint.2015.11.003 [27] Yin X F, de Foy B, Wu K P, et al. Gaseous and particulate pollutants in Lhasa, Tibet during 2013-2017: Spatial variability, temporal variations and implications. Environ Pollut, 2019, 253: 68-77. doi: 10.1016/j.envpol.2019.06.113 [28] Schultz M G, Schröder S, Lyapina O, et al. Tropospheric ozone assessment report: Database and metrics data of global surface ozone observations. Elementa: Sci Anthrop, 2017, 5: 58. DOI: 10.1525/elementa.244. [29] Lin W L, Xu X B, Zheng X D, et al. Two-year measurements of surface ozone at Dangxiong, a remote highland site in the Tibetan Plateau. J Environ Sci, 2015, 31: 133-145. doi: 10.1016/j.jes.2014.10.022 [30] 李邹, 林伟立, 徐晓斌, 等. 香格里拉区域大气本底站地面臭氧浓度的变化特征. 长江流域资源与环境, 2015, 24(8): 1412-1417.Li Z, Lin W L, Xu X B, et al. Characteristics of the surface ozone at Shangri-la regional atmospheric background station. Resour Environ Yangtze Basin, 2015, 24(8): 1412-1417. [31] Chen Y, Lin W L, Xu X B, et al. Surface ozone in southeast Tibet: Variations and implications of tropospheric ozone sink over a highland. Environ Chem, 2022, 19(5): 328-341. doi: 10.1071/EN22015 [32] 陈金秋, 施晓晖. 青藏高原-孟加拉湾大气热力差异与夏季暴雨. 应用气象学报, 2022, 33(2): 244-256. doi: 10.11898/1001-7313.20220210Chen J Q, Shi X H. Possible effects of the difference in atmospheric heating between the Tibetan Plateau and the Bay of Bengal on spatiotemporal evolution of rainstorms. J Appl Meteor Sci, 2022, 33(2): 244-256. doi: 10.11898/1001-7313.20220210 [33] 文镓齐, 王改利, 周任然, 等. 藏东南墨脱地区季风期降水的垂直结构特征. 应用气象学报, 2023, 34(5): 562-573. doi: 10.11898/1001-7313.20230505Wen J Q, Wang G L, Zhou R R, et al. Vertical structure characteristics of precipitation in Medog Area of southeastern Tibet during the monsoon period. J Appl Meteor Sci, 2023, 34(5): 562-573. doi: 10.11898/1001-7313.20230505 [34] Ellingsen K, Gauss M, Van Dingenen R, et al. Global ozone and air quality: A multi-model assessment of risks to human health and crops. Atmos Chem Phys Discuss, 2008, 8(1): 2163-2223. [35] Chen S Y, Wang H C, Lu K D, et al. The trend of surface ozone in Beijing from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity. Atmos Environ, 2020, 242. DOI: 10.1016/j.atmosenv.2020.117801. [36] 黄鸿惠, 李论. 一次青藏高原低涡和西南涡同步变化过程. 应用气象学报, 2023, 34(4): 451-462. doi: 10.11898/1001-7313.20230406Huang H H, Li L. A synchronous variation process of Tibetan Plateau vortex and southwest vortex. J Appl Meteor Sci, 2023, 34(4): 451-462. doi: 10.11898/1001-7313.20230406 [37] UNECE. Convention on Long-range Trans-boundary Air Pollution(2010) Mapping Critical Levels for Vegetation. International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops. Bangor, UK: United Nations Economic Commission for Europe, 2010. [38] 林佳璐, 李英, 柳龙生. 风暴-低涡影响下青藏高原一次强降水过程. 应用气象学报, 2023, 34(2): 166-178. doi: 10.11898/1001-7313.20230204Lin J L, Li Y, Liu L S. A heavy precipitation process over the Tibetan Plateau under the joint effects of a tropical cyclone and vortex. J Appl Meteor Sci, 2023, 34(2): 166-178. doi: 10.11898/1001-7313.20230204