Abstract:
After operational implementation of GRAPES_Meso V3.0 in March 2013, some problems are found, which include over-prediction of precipitation, integration instability, large 2 m temperature forecast errors, insufficient observations assimilated, and coarser resolution. To deal with these problems, a lot of changes are made, mainly including introducing variational quality control scheme, applying the bias correction for sounding humidity observation, assimilating GPS/PW data, FY-2E cloud drift wind and radio occultation observation, increasing resolution of the model, using the fourth horizontal diffusion scheme, adjusting the coupling scheme between dynamic core and WSM6 microphysics parameterization, optimizing land surface model, and improving diagnostic algorithm of composite radar reflectivity. GRAPES_Meso is also upgraded from Version 3.0 to Version 4.0 by integrating all of the progresses mentioned above. One month hindcast experiments are implemented and results show that, compared with GRAPES_Meso V3.0, ETS scores of precipitation forecasts for GRAPES_Meso V4.0 are obviously higher for all five thresholds of 24 h accumulated precipitation, and the bias is largely decreased for light, moderate and heavy rainfall thresholds. The monthly mean precipitation pattern and intensity are both closer to observation, and the detail precipitation distribution can be reproduced better. Daily time evolutions of root mean square errors for 2 m temperature forecasts are very similar, while the amount of V4.0 is much less than that of V3.0. Monthly mean errors are reduced about 1-2℃ over most region of China and even 3-5℃ over some region for 24 h forecast. It is apparent that GRAPES_Meso V4.0 performs better for height, temperature and wind fields, as anomaly correlation coefficients of these fields at 500 hPa are larger and root mean square errors of these fields at 850 hPa are less than those by GRAPES_Meso V3.0. The forecast skill of GRAPES_Meso is largely improved from Version 3.0 to Version 4.0. Also, the unified process control has been implemented for GRAPES_Meso and GRAPES_RAFS (Rapid Analysis and Forecast System), which can reduce the system maintenance and management costs significantly. GRAPES_Meso V4.0 is transitioned into operational run at China National Meteorological Center with horizontal resolution of 0.1°×0.1° and vertical resolution of 50 levels from July 2014 and the whole system running is stable.
Huang Liping, Chen Dehui, Deng Liantang, et al. Main technical improvements of GRAPES_Meso V4.0 and verification. J Appl Meteor Sci, 2017, 28(1): 25-37. DOI: 10.11898/1001-7313.20170103