Ma Nan, Zhou Xiuji, Yan Peng, et al. A modified method to correct the measurement error of TSI3563 integrating nephelometer. J Appl Meteor Sci, 2015, 26(1): 12-21. DOI:  10.11898/1001-7313.20150102.
Citation: Ma Nan, Zhou Xiuji, Yan Peng, et al. A modified method to correct the measurement error of TSI3563 integrating nephelometer. J Appl Meteor Sci, 2015, 26(1): 12-21. DOI:  10.11898/1001-7313.20150102.

A Modified Method to Correct the Measurement Error of TSI3563 Integrating Nephelometer

DOI: 10.11898/1001-7313.20150102
  • Received Date: 2014-03-02
  • Rev Recd Date: 2014-09-16
  • Publish Date: 2015-01-31
  • TSI3563 integrating nephelometer is designed for high-quality in-situ aerosol scattering measurement, which is widely used all over the world. However, the scattering coefficient measured by TSI3563 nephelometer contain two systematic errors: The truncation error (i.e., the geometrical blockage of near-forward/backward-scattered light) and the non-Lambertian error (i.e., the slightly non-cosine weighted intensity distribution of illumination light provided by the opal glass diffusor). These errors need to be corrected since they can typically cause a bias of about 10% in the measured scattering coefficient. Based on the aerosol properties measured in North China Plain during Hachi (Haze in China) Project, the correction factor is calculated with a traditional method and the Mie model (taken as reference) which requires aerosol number size distribution and refractive index as input. The traditional correction method is widely used all over the world since it requires only data from nephelometer itself. However, results show the traditional method cannot provide a good estimation of the correction factor. Due to the high concentration of submicron aerosol in PM10, aerosol number size distributions measured in North China Plain are different from those assumed in the traditional method. The traditional correction method is therefore inadequate for high-aerosol pollution region like North China Plain. It is found that the correction factor is sensitive on the volume fraction of supermicron aerosol in PM10. Higher volume fractions would lead to higher correction factors. A modified correction method is proposed. The volume fraction of supermicron aerosol which can be obtained from PM1 and PM10 measurement is used in the new method. For different volume fractions, different parameters are chosen for the calculation of correction factors. Testing with aerosol properties measured in North China Plain, the modified method provided a good estimation of the correction factors. 80% of correction factors calculated with the modified method are with a bias less than 1% and 100% are with a bias less than 3%. Compared with the traditional method, a distinct improvement is found in correction results. It suggests that to estimate the correction factor for TSI3563 nephelometer measurement, the Mie model should be the first choice if a real-time measurement of aerosol number size distribution is available. Otherwise, the modified method proposed should be used if a real-time PM1 and PM10 measurement is available. Without those parallel measurements, the traditional method can be the last choice to estimate the correction factor.
  • Fig. 1  Relationship between the correction factor and Ångström exponent calculated based on HaChi measurements

    Fig. 2  Relationship between the correction factor and Ångström exponent at 550 nm wavelength calculated from randomly generated aerosol number size distributions

    Fig. 3  Frequency distributions of the bias between correction factor calculated with different methods and reference values

    Fig. 4  Cumulative distribution function of the bias between correction factor culculated with different methods and reference values

    Table  1  Parameters used in the correction function of Anderson and Ogren's method (from Reference [5])

    参数 450 nm 550 nm 700 nm
    PM10切割 PM1切割 PM10切割 PM1切割 PM10切割 PM1切割
    a 1.365 1.165 1.337 1.152 1.297 1.120
    b -0.156 -0.046 -0.138 -0.044 -0.113 -0.035
    Cave 1.290 1.094 1.290 1.073 1.260 1.049
    DownLoad: Download CSV

    Table  2  Relative differences between C550 calculated under different parameter assumptions and the reference value

    情形 mr, non mi, non mr, BC mi, BC 混合状态 C550 相对偏差/%
    参考情形 1.53 10-7 1.75 0.55 部分内混合、部分外混合 1.1174 0
    情形1 1.50 10-7 1.75 0.55 部分内混合、部分外混合 1.1208 0.30
    情形2 1.55 10-7 1.75 0.55 部分内混合、部分外混合 1.1150 -0.21
    情形3 1.53 10-7 1.50 0.55 部分内混合、部分外混合 1.1190 0.14
    情形4 1.53 10-7 2.00 0.55 部分内混合、部分外混合 1.1157 -0.15
    情形5 1.53 10-7 1.75 0.44 部分内混合、部分外混合 1.1169 -0.04
    情形6 1.53 10-7 1.75 0.66 部分内混合、部分外混合 1.1177 0.03
    情形7 1.53 10-7 1.75 0.55 均匀内混合 1.1178 0.04
    情形8 1.53 10-7 1.75 0.55 外混合 1.1171 -0.03
    DownLoad: Download CSV

    Table  3  Parameters for different fvsm range used in the improved method

    fvsm 450 nm 550 nm 700 nm
    a b c a b c a b c
    [0, 0.1) 0.0073 -0.0630 1.1738 0.0069 -0.0577 1.1617 0.0078 -0.0536 1.1450
    [0.1, 0.2) 0.0095 -0.0648 1.1794 0.0105 -0.0609 1.1670 0.0162 -0.0665 1.1559
    [0.2, 0.3) 0.0136 -0.0727 1.1930 0.0174 -0.0741 1.1836 0.0302 -0.0959 1.1833
    [0.3, 0.4) 0.0206 -0.0878 1.2127 0.0265 -0.0898 1.2020 0.0419 -0.1088 1.1959
    [0.4, 0.5) 0.0275 -0.0990 1.2334 0.0310 -0.0865 1.2120 0.0442 -0.0868 1.1904
    [0.5, 0.6) 0.0310 -0.0994 1.2554 0.0329 -0.0751 1.2273 0.0445 -0.0604 1.1967
    [0.6, 0.7) 0.0443 -0.1155 1.2951 0.0443 -0.0765 1.2602 0.0531 -0.0442 1.2220
    DownLoad: Download CSV
  • [1]
    Charlson R J, Schwartz S E, Hales J M, et al.Climate forcing by anthropogenic aerosols.Science, 1992, 255(5043):423-430. doi:  10.1126/science.255.5043.423
    [2]
    Mishchenko M I, Cairns B, Hansen J E, et al.Monitoring of aerosol forcing of climate from space:Analysis of measurement requirements.Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 88(1):149-161. https://www.researchgate.net/publication/222547291_Monitoring_of_Aerosol_forcing_of_climate_from_space_analysis_of_measurement_requirements
    [3]
    Heintzenberg J, Charlson R J.Design and applications of the integrating nephelometer:A review.J Atmos Ocean Technol, 1996, 13(5):987-1000. doi:  10.1175/1520-0426(1996)013<0987:DAAOTI>2.0.CO;2
    [4]
    Anderson T L, Covert D S, Marshall S F, et al.Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer.J Atmos Ocean Technol, 1996, 13(5):967-986. doi:  10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2
    [5]
    Anderson T L, Ogren J A.Determining aerosol radiative properties using the TSI 3563 integrating nephelometer.Aerosol Science and Technology, 1998, 29(1):57-69. doi:  10.1080/02786829808965551
    [6]
    Birmili W, Stratmann F, Wiedensohler A.Design of a DMAbased size spectrometer for a large particle size range and stable operation.J Aerosol Sci, 1999, 30(4):549-553. doi:  10.1016/S0021-8502(98)00047-0
    [7]
    Mie G.Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen.Annalen der Physik, 1908, 330(3):377-445. doi:  10.1002/(ISSN)1521-3889
    [8]
    Wex H, Neusüβ C, Wendisch M, et al.Particle scattering, backscattering, and absorption coefficients:An in situ closure and sensitivity study.Journal of Geophysical Research:Atmospheres (1984-2012), 2002, 107(D21):LAC 4-1-LAC 4-18. doi:  10.1029/2000JD000234
    [9]
    Ma N, Zhao C S, Müller T, et al.A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions.Atmospheric Chemistry and Physics, 2012, 12(5):2381-2397. doi:  10.5194/acp-12-2381-2012
    [10]
    Ma N, Zhao C S, Nowak A, et al.Aerosol optical properties in the North China Plain during HaChi Campaign:An in-situ optical closure study.Atmospheric Chemistry and Physics, 2011, 11(12):5959-5973. doi:  10.5194/acp-11-5959-2011
    [11]
    Schuster G L, Dubovik O, Holben B N.Angstrom exponent and bimodal aerosol size distributions.Journal of Geophysical Research:Atmospheres (1984-2012), 2006, 111(D7), doi: 10.1029/2005JD006328.
    [12]
    Eck T F, Holben B N, Reid J S, et al.Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols.Journal of Geophysical Research:Atmospheres (1984-2012), 1999, 104(D24):31333-31349. doi:  10.1029/1999JD900923
    [13]
    Westphal D L, Toon O B.Simulations of microphysical, radiative, and dynamical processes in a continental-scale forest fire smoke plume.Journal of Geophysical Research:Atmospheres (1984-2012), 1991, 96(D12):22379-22400. doi:  10.1029/91JD01956
    [14]
    Khalizov A F, Xue H, Wang L, et al.Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid.The Journal of Physical Chemistry A, 2009, 113(6):1066-1074. doi:  10.1021/jp807531n
    [15]
    Katrinak K A, Rez P, Perkes P R, et al.Fractal geometry of carbonaceous aggregates from an urban aerosol.Environmental Science & Technology, 1993, 27(3):539-547. https://www.researchgate.net/publication/231276246_Fractal_geometry_of_carbonaceous_aggregates_from_an_urban_aerosol
    [16]
    Okada K, Heintzenberg J, Kai K, et al.Shape of atmospheric mineral particles collected in three Chinese arid-regions.Geophys Res Lett, 2001, 28(16):3123-3126. doi:  10.1029/2000GL012798
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(3)

    Article views (2981) PDF downloads(1451) Cited by()
    • Received : 2014-03-02
    • Accepted : 2014-09-16
    • Published : 2015-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint