Gao Yudong, Wan Qilin, Xue Jishan, et al. Effects of assimilating radar rainfall rate estimation on torrential rain forecast. J Appl Meteor Sci, 2015, 26(1): 45-56. DOI:  10.11898/1001-7313.20150105.
Citation: Gao Yudong, Wan Qilin, Xue Jishan, et al. Effects of assimilating radar rainfall rate estimation on torrential rain forecast. J Appl Meteor Sci, 2015, 26(1): 45-56. DOI:  10.11898/1001-7313.20150105.

Effects of Assimilating Radar Rainfall Rate Estimation on Torrential Rain Forecast

DOI: 10.11898/1001-7313.20150105
  • Received Date: 2014-05-06
  • Rev Recd Date: 2014-10-13
  • Publish Date: 2015-01-31
  • Meso-scale weather system, such as torrential rain, is neither easily detected nor effectively simulated. Main causes consist of the insufficient observation and the inaccurate initial filed, which are prepared for the routine weather prediction and the hazardous weather simulation. To solve these problems, high resolution rainfall rate data estimated by doppler radar Z-I relationship is calibrated with AWS data by variational method. The forecast experiment on a torrential rain case captured by the radar in Guangzhou indicates that the east center of precipitation omitted in the original Z-I estimation is forecasted after the calibration. Even though the minor amount of rainfall rate is inclined to be overestimated, relative errors of calibration significantly decline as the increase of rain rate value. As a result, high resolution datasets of calibration rain rate are demonstrated to possess a more accurate single point value than the estimation of Z-I relationship and a more reasonable gradient than AWS data. Meanwhile, according to the distribution of instantaneous precipitation, calibration rainfall rate datasets imply lots of information on the atmospheric dynamic and moisture, which are the major factors to arouse a convective rainstorm.To verify various advantages of mixed characteristics, a set of experiments are performed using FSU (Florida State University) cumulus parameterization scheme as the observational operator, based on GRAPES (Global/Regional Analysis and Prediction System) Regional Three Dimensional Variation System. Compared with NCEP (National Centers for Environmental Prediction) global analysis data, the convergence in lower level and the divergence in higher level after assimilation are conspicuously strengthened, which sequentially lead the unstable energy in atmosphere to be elevated. Showalter index and K index diagnose indicate a heavy rain in the dense data region as well. In addition, the vertical transportation of moisture forced by the convergence sustains a strong convection and ameliorates the cumulative precipitation. The storm path prediction is obviously improved. Results of simulation experiment express that not only the hourly distribution and center of precipitation are similar to the observation, also, the meso-scale convective system development and demise are impressively depicted.
  • Fig. 1  Guangzhou radar estimations of rainfall rate (the shaded) and automatic weather station rainfall rate (number)(unit:m·h-1) at 1000 UTC 28 May 2009(a) before variational calibration, (b) after variational calibration

    Fig. 2  Relative errors between radar estimation of rainfall rate and automatic weather station rainfall rate at 1000 UTC 28 Mar 2009 (a) before variational calibration, (b) after variational calibration

    Fig. 3  Disturbance of linear observational operator with respect to specific humidity and vertical velocity

    Fig. 4  The distribution of specific humidity (the shaded), divergence (contour, unit:10-5s-1) and horizontal wind (vector) before and after assimilation

    (a)850 hPa horizontal distribution of background wind and specific humidity, (b)850 hPa horizontal distribution of analysis wind and specific humidity, (c)850 hPa horizontal distribution of increment divergence and specific humidity, (d) vertical distribution of increment divergence and specific humidity along 23°N

    Fig. 5  The distribution of moisture advection (the shaded, unit: 10-6 m·s-2), moisture flux divergence (the shaded, unit: 10-6 g·cm-2·hPa·s) and flow field (streamline) at 850 hPa before and after assimilation

    (a) moisture advection of ExpC, (b) moisture advection of ExpA, (c) moisture flux divergence and flow field of ExpC, (d) moisture flux divergence and flow field of ExpA

    Fig. 6  Showalter index and K index

    (a) Showalter index of ExpC, (b) Showalter index of ExpA, (c)K index of ExpC, (d)K index of ExpA

    Fig. 7  Precipitation from 1000 UTC to 1500 UTC on 28 Mar 2009(unit:mm)

    (a) ExpC, (b) ExpA, (c) observation, (d) hourly maximum precipitation

    Fig. 8  The distribution of hourly rainfall at surface

  • [1]
    王楠, 刘黎平, 徐宝祥, 等.利用多普勒雷达资料识别低空风切变和辐合线方法研究.应用气象学报, 2007, 18(3):314-320. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070353&flag=1
    [2]
    王改利, 刘黎平, 阮征.多普勒雷达资料在暴雨临近预报中的应用.应用气象学报, 2007, 18(3):388-395. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070363&flag=1
    [3]
    王飞, 张义军, 赵均壮, 等.雷达资料在孤立单体雷电预警中的初步应用.应用气象学报, 2008, 19(2):153-160. doi:  10.11898/1001-7313.20080228
    [4]
    Wilson J W.Integration of radar and raingagedata for improved rainfall measurement.J Appl Meteor, 1970, 9(3):489-497. doi:  10.1175/1520-0450(1970)009<0489:IORARD>2.0.CO;2
    [5]
    Brandes E A.Optimizing rainfall estimates with the aid of radar.J Appl Meteor, 1975, 14(7):1339-1345. doi:  10.1175/1520-0450(1975)014<1339:OREWTA>2.0.CO;2
    [6]
    Brandes E A, Sirmans D.Convective Rainfall Estimation by Radar-experimental Results and Proposed Operational Analysis Technique.Preprint Volume of Conference on Hydrometeoroogy, Amer Meteor Soc, 1976:54-59.
    [7]
    Sasaki Y.Some basic formalisms in numerical variation analysis.Mon Wea Rev, 1970, 98(12):875-883. doi:  10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2
    [8]
    Ninomiya K, Akiyama T.Objective analysis of heavy rainfalls based on radar and gauge measurement.J Meteor Soc Japan, 1978, 50:206-210. doi:  10.1061/%28ASCE%29HE.1943-5584.0000378
    [9]
    张培昌, 戴铁丕, 伍志方, 等.用变分方法校准数字化天气雷达测定区域降水量基本原理和精度.大气科学, 1992, 16(2):248-256. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199202012.htm
    [10]
    王叶红, 崔春光, 赵玉春, 等.变分技术在校准数字化天气雷达定量估测降水中的应用.气象, 2001, 27(10):3-7. doi:  10.3969/j.issn.1000-0526.2001.10.001
    [11]
    万齐林.气象遥感资料变分校准方案改进及应用试验.气象, 2006, 32(11):19-24. doi:  10.3969/j.issn.1000-0526.2006.11.003
    [12]
    丁伟钰, 万齐林, 闫敬华, 等.对流天气系统自动站雨量资料同化对降雨预报的影响.大气科学, 2006, 30(2):317-326. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200602013.htm
    [13]
    Marécal V, Mahfouf J F.Four-dimensional variational assimilation of total column water vaporin rainy areas.Mon Wea Rev, 2002, 130(1):43-58. doi:  10.1175/1520-0493(2002)130<0043:FDVAOT>2.0.CO;2
    [14]
    Bauer P, Mahfouf J F, Olson W S, et al.Error analysis of TMI rainfall estimates over ocean for variational data assimilation.Quart J Roy Meteor Soc, 2002, 128(584):2129-2144. doi:  10.1256/003590002320603575
    [15]
    丁伟钰, 万齐林, 端义宏.TRMM降水率资料的三维变分同化及其对"杜鹃"(0313) 台风预报的改进.大气科学, 2005, 29(4):600-608. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200504010.htm
    [16]
    Macpherson B.Operational experience with assimilation of rainfall datain the met office mesoscale model.Meteor Atmos Phys, 2001, 76(1-2):3-8. https://www.researchgate.net/publication/225750106_Operational_experience_with_assimilation_of_rainfall_datain_the_Met_Office_Mesoscale_model
    [17]
    Stephan K, Klink S, Schraff C.Assimilation of radar derived rain rates into the convective scale model COSMO-DE at DWD.Quart J Roy Meteor Soc, 2008, 134(634):1315-1326. doi:  10.1002/qj.v134:634
    [18]
    Wang X B, Yau M K, Nagarajan B, et al.The impact of assimilating radar-estimated rain rateson simulation of precipitation in the 17-18 July 1996 Chicago Floods.Adv Atmos Sci, 2010, 27(2):195-210. doi:  10.1007/s00376-009-8212-6
    [19]
    张培昌, 杜秉玉, 戴铁丕.雷达气象学.北京:气象出版社, 2001:181-186.
    [20]
    江源, 刘黎平, 庄薇.多普勒天气雷达地物回波特征及其识别方法改进.应用气象学报, 2009, 20(2):203-213. doi:  10.11898/1001-7313.20090210
    [21]
    Anthes R A.A cumulus parameterization scheme utilizing a one-dimensional cloud model.Mon Wea Rev, 1977, 105(3):270-286. doi:  10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2
    [22]
    Krishnamurti T N, Low-Nam S, Pasch R.Cumulus parameterization and rainfall rates Ⅱ.Mon Wea Rev, 1983, 111(4):815-828. doi:  10.1175/1520-0493(1983)111<0815:CPARRI>2.0.CO;2
    [23]
    Krishnamurti T N, Ramanathan Y, Pan H L, et al.Cumulus parameterization and rainfall rates Ⅰ.Mon Wea Rev, 1980, 108(4):465-472. doi:  10.1175/1520-0493(1980)108<0465:CPARRI>2.0.CO;2
    [24]
    庄世宇, 薛纪善, 朱国富, 等.GRAPES全球三维变分同化系统——基本设计方案与理想试验.大气科学, 2005, 29(6):872-884. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506003.htm
    [25]
    李华宏, 薛纪善, 王曼, 等.多普勒雷达风廓线的反演及变分同化试验.应用气象学报, 2007, 18(1):50-57. doi:  10.11898/1001-7313.20070110
    [26]
    万齐林, 薛纪善.曲率修正线性平衡方程及其在变分同化风压约束中的应用.热带气象学报, 2007, 23(5):417-423. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200705000.htm
    [27]
    王瑞春, 龚建东, 张林.GRAPES变分同化系统中动力平衡约束的统计求解.应用气象学报, 2012, 23(2):129-138. doi:  10.11898/1001-7313.20120201
  • 加载中
  • -->

Catalog

    Figures(8)

    Article views (3196) PDF downloads(969) Cited by()
    • Received : 2014-05-06
    • Accepted : 2014-10-13
    • Published : 2015-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint