Lin Xiaomeng, He Ping, Huang Xingyou. A method to suppress the precipitation interference on horizontal wind of wind profile radar. J Appl Meteor Sci, 2015, 26(1): 66-75. DOI:  10.11898/1001-7313.20150107.
Citation: Lin Xiaomeng, He Ping, Huang Xingyou. A method to suppress the precipitation interference on horizontal wind of wind profile radar. J Appl Meteor Sci, 2015, 26(1): 66-75. DOI:  10.11898/1001-7313.20150107.

A Method to Suppress the Precipitation Interference on Horizontal Wind of Wind Profile Radar

DOI: 10.11898/1001-7313.20150107
  • Received Date: 2014-05-12
  • Rev Recd Date: 2014-10-08
  • Publish Date: 2015-01-31
  • Wind profile radar (WPR) is a kind of clear air radar, which takes atmospheric turbulence as the main detecting object. In the past few decades, WPR spectral data processing mainly focus on the wind spectrum estimation. In recent years, with the use of WPR data expansion, there are increasingly high demands for WPR data accuracy. However, ground clutter, external noise, flying objects, presence of disturbances such as precipitation and limitations of Fourier Transform often lead multiple peaks overlapping phenomenon, which makes it difficult to judge spectral moments, resulting in large error detection products. Especially in the case of precipitation, wind speed measurement may be even completely wrong. Therefore, the radar power spectrum data need further processing under different weather conditions especially for turbulence and precipitation to establish an effective spectral extraction programs and enhance the wind profile accuracy of radar detection.WPR has a large dynamic reception range, so it can receive the echo of scattering of atmosphere turbulence and scattering of precipitation particles simultaneously during precipitation. In this case, spectrum of atmosphere turbulence and spectrum of precipitation are superimposed. It requires uniform wind-field on horizon when calculating the horizontal wind, but the spatial variability of precipitation will bring distorted horizontal wind-field if the superimposed spectrum data. To avoid this problem, the radar power spectrum data are processed with three steps. First, the original radar power spectrum is processed by interpolation and moving average, judging whether it is affected by precipitation according to the number of maximum points. Second, in the case that the radar power spectrum is affected by precipitation, spectrums of atmosphere turbulence and precipitation are separated by two methods in accordance with spectrum of atmosphere turbulence and spectrum of precipitation's tending to symmetry. And then the horizontal wind-field is derived utilizing the separated spectrum of atmosphere turbulence. Case analysis shows that the consistency of derived wind-field has significant improvement using the spectrum of atmosphere turbulence instead of the original spectrum.
  • Fig. 1  The radar power spectrum of vertical beam on 3 heights during a precipitation process of 1901 BT 15 June 2013 at Zhanjiang Station in Guangdong

    Fig. 2  Schematic diagram of WPR's 5 beams

    Fig. 3  Schematic of spectrum identified as one peak (a) and double peaks (b)

    Fig. 4  Separation of symmetry treatment (a) and subtraction treatment (b)

    Fig. 5  Spectrum of atmosphere turbulence separated from original spectrum on different height

    Fig. 6  Flow chart of spectrum identification and separation

    Fig. 7  Spectral width of precipitation during 1700-2100 BT on 15 June 2013(a) and from 2100 BT 27 July to 0100 BT 28 July in 2013(b) at Zhanjiang Station of Guangdong

    Fig. 8  Spectral distribution with height at 1901 BT on 15 June 2013(a) and 2302 BT on 27 July 2013(b) of WPR at Zhanjiang Station of Guangdong

    Fig. 9  Wind feathers before the treatment (a) and after the treatment (b) during 1808-2020 BT on 15 June 2013 at Zhanjiang Station of Guangdong

    Fig. 10  Wind feathers before the treatment (a) and after the treatment (b) during 2214-2359 BT on 27 July 2013 at Zhanjiang Station of Guangdong

    Table  1  WPR parameters at Zhanjiang Station of Guangdong

    参数 取值
    采样频率/MHz 60
    发射波长/mm 674
    脉冲重复频率/Hz 20000
    起始采样库的距离高度/m 150
    终止采样库的距离高度/m 3630
    探测模式
    距离库长/m 120
    发射功率/kW 7.7
    相干累积 200
    FFT点数 256
    谱平均数 5
    DownLoad: Download CSV
  • [1]
    周旭辉.风廓线雷达功率谱密度数据处理算法研究.南京:南京信息工程大学, 2011.
    [2]
    尹忠海, 张沛源.利用卡尔曼滤波校准方法估算区域降水量.应用气象学报, 2005, 16(2):213-219. doi:  10.11898/1001-7313.20050226
    [3]
    何平, 朱小燕, 阮征, 等.风廓线雷达探测降水过程的初步研究.应用气象学报, 2009, 8(4):465-470. doi:  10.11898/1001-7313.200904011
    [4]
    阮征, 葛润生, 吴志根.风廓线仪探测降水云体结构方法的研究.应用气象学报, 2002, 13(3):330-338. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020343&flag=1
    [5]
    杨馨蕊.风廓线雷达数据质量控制方法探讨及其应用.北京:中国气象科学研究院, 2009.
    [6]
    杨新蕊, 马舒庆, 吴蕾.UHF风廓线雷达降水数据判别方法的比较与评价.大气科学学报, 2010, 33(5):576-581. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201005009.htm
    [7]
    腾志遥, 贺红兵.风廓线雷达数据质量控制方法.雷达与对抗, 2008(1):10-15. http://cdmd.cnki.com.cn/Article/CDMD-85101-2009109176.htm
    [8]
    Wuertz D B, WeberB L, Strauch R G, et al.Effects of precipitation on UHF wind-profiler measurements.J Atmos Oceanic Tech, 1988, 5:450-465. doi:  10.1175/1520-0426(1988)005<0450:EOPOUW>2.0.CO;2
    [9]
    Steiner A, Richner H.Separation of clear-air echoes from precipitation echoes in UHF wind profiler measurements.Ann Geo-phys, 1994, 12:497-505.
    [10]
    Ralph F M, Neiman P J, Uffieux D.Precipitation identification from radar wind profiler spectral moment data:Vertical velocity histograms, velocity variance, and signal power-vertical velocity correlations.J Atmos Oceanic Tech, 1995, 13:545-559. https://www.researchgate.net/publication/249604150_Precipitation_Identification_from_Radar_Wind_Profiler_Spectral_Moment_Data_Vertical_Velocity_Histograms_Velocity_Variance_and_Signal_Power-Vertical_Velocity_Correlations
    [11]
    McDonald A J, Carey-Smith T K, Hooper D A, et al.The effect of precipitation on wind-profiler clear air returns.Ann Geo-phys, 2004, 22:3959-3970. https://www.researchgate.net/profile/Adrian_Mcdonald2/publication/41119483_The_effect_of_precipitation_on_wind-profiler_clear_air_returns/links/09e4151271521d0407000000.pdf?origin=publication_detail
    [12]
    王晓蕾.风廓线雷达探测降水云体中雨滴谱的试验研究.南京:南京信息工程大学, 2009. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201002026.htm
    [13]
    张旭, 周秀骥.大气折射率结构系数Cn2的观测实验.应用气象学报, 1994, 5(1):19-26. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940105&flag=1
    [14]
    何平.相控阵风廓线雷达.北京:气象出版社, 2006.
    [15]
    张培昌, 杜秉玉, 戴铁丕.雷达气象学.北京:气象出版社, 2006.
    [16]
    何平, 李柏, 吴蕾, 等.确定风廓线雷达功率谱噪声功率方法.应用气象学报, 2013, 24(3):297-303. doi:  10.11898/1001-7313.20130305
    [17]
    钟刘军, 阮征, 葛润生, 等.风廓线雷达回波信号强度定标方法.应用气象学报, 2010, 21(5):598-605. doi:  10.11898/1001-7313.20100509
  • 加载中
  • -->

Catalog

    Figures(10)  / Tables(1)

    Article views (3683) PDF downloads(1079) Cited by()
    • Received : 2014-05-12
    • Accepted : 2014-10-08
    • Published : 2015-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint