Wang Ying, Xiong Anyuan. Effects of radiosonde system changing to L-band radar digital radiosonde on humidity measurements in China. J Appl Meteor Sci, 2015, 26(1): 76-86. DOI:  10.11898/1001-7313.20150108.
Citation: Wang Ying, Xiong Anyuan. Effects of radiosonde system changing to L-band radar digital radiosonde on humidity measurements in China. J Appl Meteor Sci, 2015, 26(1): 76-86. DOI:  10.11898/1001-7313.20150108.

Effects of Radiosonde System Changing to L-band Radar Digital Radiosonde on Humidity Measurements in China

DOI: 10.11898/1001-7313.20150108
  • Received Date: 2014-03-31
  • Rev Recd Date: 2014-10-11
  • Publish Date: 2015-01-31
  • The radiosonde sounding is a major tool for measuring the vertical structure of atmospheric variables. Accurate monitoring of water vapor is vital for numerical weather prediction and climatic change assessment. The radiosonde sounding system in China begins upgrading to L-band radar digital radiosonde system from 59-701 system since 2002 and completes in 2011, and the sensor for humidity measurement is changed from goldbeater's skin to a carbon hygristor. These changes may result in discontinuity of radiosonde observation series.In order to determine the observational bias brought by the upgrade, comparative analysis of relative humidity (RH) measurement between pre-change and post-change of the system is made using radiosonde humidity observations. 98 radiosonde stations out of 120 stations in China are selected to analyze differences between 3 pre-change years and 3 post-change years. Results show that RH after changing the sensor has a significant dry bias. There are statistically significant dry bias in almost all selected stations at 200 hPa, and in 75% and 54% stations at 500 hPa and 850 hPa, respectively. RH dry biases increase with height in troposphere, with values of 14.6%, 8.3% and 5.3% at 200 hPa, 500 hPa and 850 hPa, respectively. There are more dry biases during daytime than nighttime due to impacts of solar radiation. The probability distribution of relative humidity after the system upgrading has a significant shift comparing to pre-upgrading. The occurrence frequency of RH with the value less than 20% after system change is much higher than that during pre-change, which are 53% vs 10% at 200 hPa. The frequency of RH with the value less than or equal to 3% are 16.2%, 9.9% and 2.2% on 200 hPa, 500 hPa and 850 hPa after system upgrading, but that is nearly 0 at three levels before upgrading. Causes of these dry biases and biases between actual value and the observation will be further studied. Also, methods for correcting the bias should be developed.
  • Fig. 1  Dates and number of stations for radiosonde system changing since January of 2002

    Fig. 2  Differences of relative humidity between pre-change and post-change of sensor at 200 hPa, 500 hPa and 850 hPa (uint: %)

    (the solid circle denotes passing the test of 0.1 level, hollow circle denotes no significance)

    Fig. 3  Variation with heights for relative humidity difference between pre-change and post-change of sensor at Beijing Station and Wuhan Station

    Fig. 4  Time series of annual mean relative humidity and annual mean temperature at Beijing Station

    Fig. 5  Scatter diagram for relative humidity difference of different heights between pre-change and post-change of sensor at 0000 UTC and 1200 UTC

    Fig. 6  The probability distribution of relative humidity between pre-change and post-change of sensor

    Table  1  Mean differences of relative humidity between pre-change and past-change of sensor (uint: %)

    高度 1月 4月 7月 10月 年平均
    200 hPa 11.62 12.61 15.74 16.08 14.63
    500 hPa 12.33 7.64 5.40 8.41 8.31
    850 hPa 5.84 5.87 1.42 5.34 5.32
    DownLoad: Download CSV
  • [1]
    Durre I, Junior C N W, Yin X, et al.Radiosonde-based trends in precipitable water over the Northern Hemisphere:An update.J Geophys Res, 2009, 114, D05112, doi: 10.1029/2008JD010989.
    [2]
    McCarthy M P, Thorne P W, Titchner H A.An analysis of tropospheric humidity trends from radiosondes.J Clim, 2009, 22:5820-5838, doi: 10.1175/2009JCLI2879.1.
    [3]
    翟盘茂, 周琴芳.中国大气水分气候变化研究.应用气象学报, 1997, 8(3):342-351. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970348&flag=1
    [4]
    Minschwaner K, Dessler A E.Water vapor feedback in the tropical upper troposphere:Model results and observations.J Clim, 2004, 17:1272-1282. doi:  10.1175/1520-0442(2004)017<1272:WVFITT>2.0.CO;2
    [5]
    Minschwaner K, Dessler A E, Sawaengphokhai P.Multimodel analysis of the water vapor feedback in the tropical upper troposphere.J Clim, 2006, 19:5455-5464, doi: 10.1175/JCLI3882.1.
    [6]
    Soden B J, Jackson D L, Ramaswamy V, et al.The radiative signature of upper tropospheric moistening.Science, 2005, 310:841-844, doi: 10.1126/science.1115602.
    [7]
    Gettelman A, Fu Q.Observed and simulated upper tropospheric water vapor feedback.J Clim, 2008, 21:3282-3289, doi:10.1175/ 2007JCLI2142.1.
    [8]
    杜明斌, 杨引明, 丁金才.COSMIC反演精度和有关特性的检验.应用气象学报, 2009, 29(5):586-593. doi:  10.11898/1001-7313.20090510
    [9]
    朱元竞, 李万彪, 陈勇.GMS-5估计可降水量的研究.应用气象学报, 1998, 9(1):8-14. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980102&flag=1
    [10]
    孙学金, 赵世军, 余鹏.GPS掩星切点水平漂移规律的数值研究.应用气象学报, 2004, 15(2):174-180. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040222&flag=1
    [11]
    Elliott W P, Gaffen D J.On the utility of radiosonde humidity archives for climate studies.Bull Amer Meteor Soc, 1991, 72: 1507-1520. doi:  10.1175/1520-0477(1991)072<1507:OTUORH>2.0.CO;2
    [12]
    Elliott W P, Gaffen D J.Effects of conversion algorithms on reported upper-air dewpoint depressions.Bull Amer Meteor Soc, 1993, 74:1323-1325. doi:  10.1175/1520-0477(1993)074<1323:EOCAOR>2.0.CO;2
    [13]
    Zhao T, Dai A, Wang J.Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset.J Climate, 2012, 25:4549-4567, doi: 10.1175/jcli-d-11-00557.1.
    [14]
    Zhai P M, Eskridge R E.Analyses of inhomogeneities in radiosonde temperature and humidity time series.J Climate, 1996, 9:884-894. doi:  10.1175/1520-0442(1996)009<0884:AOIIRT>2.0.CO;2
    [15]
    Guo Y, Thorne P W, McCarthy M P, et al.Radiosonde temperature trends and their uncertainties over eastern China.Int J Climatol, 2008, 28:1269-1281. doi:  10.1002/joc.v28:10
    [16]
    Guo Y, Ding Y.Long-term free-atmosphere temperature trends in China derived from homogenized in situ radiosonde temperature series.J Climate, 2009, 22:1037-1051. doi:  10.1175/2008JCLI2480.1
    [17]
    Dai A, Wang J, Thorne P W, et al.A new approach to homogenize daily radiosonde humidity data.J Climate, 2011, 24:965-991. doi:  10.1175/2010JCLI3816.1
    [18]
    翟盘茂.中国历史探空资料中的一些过失误差及偏差问题.气象学报, 1997, 55(5):563-572. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB705.004.htm
    [19]
    Soden B J, Lanzante J R.An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor.J Climate, 1996, 9:1235-1250. doi:  10.1175/1520-0442(1996)009<1235:AAOSAR>2.0.CO;2
    [20]
    Nakamura H, Seko H, Shoji Y.Dry biases of humidity measurements from the Vaisala RS80-A and Meisei RS2-91 radiosondes and from ground-based GPS.J Meteor Soc Japan, 2004, 82:277-299. doi:  10.2151/jmsj.2004.277
    [21]
    Turner D D, Lesht B M, Clough S A, et al.Dry bias and variability RS80-H Radiosondes:The ARM experience.J Atmos Oceanic Technol, 2003, 20:117-132. doi:  10.1175/1520-0426(2003)020<0117:DBAVIV>2.0.CO;2
    [22]
    Wang J, Zhang L.Systematic errors in global radiosondeprecipitable water data from comparisons with groundbased GPS measurements.J Climate, 2008, 21:2218-2238. doi:  10.1175/2007JCLI1944.1
    [23]
    Bian J C, Chen H B, Vomel H, et al.Intercomparison of humidity and temperature sensors:GTS1, Vaisala RS80, and CFH.Adv Atmos Sci, 2011, 28(1):139-146, doi: 10.1007/s00376-010-9170-8.
    [24]
    李柏, 李伟.阳江第八届国际探空系统比对试验综述.气象科技进展, 2011, 1(3):6-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201103004.htm
    [25]
    郭启云, 李伟, 张玉存, 等.GTS1型、GTS1-1型、GTS1-2型探空仪性能试验与对比分析.气象水文海洋仪器, 2012(1):5-10. http://www.cnki.com.cn/Article/CJFDTOTAL-QXSW201201004.htm
    [26]
    World Meteorological Organization.Guide to Meteorological Instruments and Methods of Observation.Seventh Edition, WMO-No.8, 2008. http://radiometrics.com/data/uploads/2014/07/wmo_8_en-2012.pdf
    [27]
    Ivanov A, Kats A, Kumosen K, et al.WMO International Radiosonde Intercomparison, Phase Ⅲ, Final Report.WMO/TD-No.451, 1991.
    [28]
    张立功, 陈志斌, 王勇, 等.L波段雷达-电子探空仪系统对比观测分析.气象科技, 2007, 35(1):123-125. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200701027.htm
    [29]
    中国气象局.常规高空气象观测业务规范.北京:气象出版社, 2010.
    [30]
    马颖, 姚雯, 黄炳勋.59型与L波段探空仪温度和位势高度记录对比.应用气象学报, 2010, 21(2): 214-221. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100211&flag=1
    [31]
    Cady-Pereira K E, Shephard M W, Turner D D, et al.Improved daytime column-integrated precipitable water vapor from Vaisala radiosonde humidity sensors.J Atmos Oceanic Technol, 2008, 25:873-883, doi:  10.1175/2007jtecha1027.1.
    [32]
    Häberli C.Assessment, correction and impact of the dry bias in radiosonde humidity data during the MAP SOP.Quart J Roy Meteor Soc, 2006, 132:2827-2852. doi:  10.1256/qj.05.33
    [33]
    Wang J, Zhang L, Dai A, et al.Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data.J Atmos Oceanic Technol, 2013, 30:197-214, doi: 10.1175/jtech-d-12-00113.1.
    [34]
    徐文静, 郭亚田, 黄炳勋, 等.GTS探空仪碳湿敏元件性能测试数据分析及相对湿度订正.气象科技, 2007, 35(3):423-428. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200703027.htm
    [35]
    李伟, 邢毅, 马舒庆.国产GTS1探空仪与VAISALA公司RS92探空仪对比分析.气象, 2009, 35(10):97-102. doi:  10.7519/j.issn.1000-0526.2009.10.012
    [36]
    姚雯, 马颖, 徐文静.L波段电子探空仪相对湿度误差研究及其应用.应用气象学报, 2008, 19(3):356-361. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080358&flag=1
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(1)

    Article views (3684) PDF downloads(1347) Cited by()
    • Received : 2014-03-31
    • Accepted : 2014-10-11
    • Published : 2015-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint