生育期 | 最低温度 | 最高温度 | 适宜温度 |
播种期 | 10 | 40 | 18 |
出苗期 | 14 | 40 | 20 |
移栽、返青期 | 15 | 35 | 28 |
分蘖期 | 17 | 33 | 25 |
孕穗期 | 17 | 40 | 25 |
抽穗期 | 18 | 35 | 25 |
乳熟、成熟期 | 13 | 35 | 23 |
Citation: | Shuai Xiqiang, Lu Kuidong, Huang Wanhua. A comparative study on dynamic forecasting of early rice yield by using different methods in Hunan Province. J Appl Meteor Sci, 2015, 26(1): 103-111. DOI: 10.11898/1001-7313.20150111. |
Table 1 The minimum, maximum and optimum temperatures at different growth stages of early rice in Hunan Province (unit:℃)
生育期 | 最低温度 | 最高温度 | 适宜温度 |
播种期 | 10 | 40 | 18 |
出苗期 | 14 | 40 | 20 |
移栽、返青期 | 15 | 35 | 28 |
分蘖期 | 17 | 33 | 25 |
孕穗期 | 17 | 40 | 25 |
抽穗期 | 18 | 35 | 25 |
乳熟、成熟期 | 13 | 35 | 23 |
Table 2 Dynamic forecasting models for bumper or poor harvest of early rice yield based on climatic suitability in Hunan Province
预报时间 | 预报模型 | 显著性水平 |
04-30 | ΔY=(34.2f-0.60)×100% | 未达到0.10显著性水平 |
05-10 | ΔY=(34.4f-10.70)×100% | 0.02 |
05-20 | ΔY=(38.3f-18.68)×100% | 0.01 |
05-31 | ΔY=(38.2f-16.99)×100% | 0.01 |
06-10 | ΔY=(37.0f-7.64)×100% | 0.01 |
06-20 | ΔY=(37.8f-17.60)×100% | 0.01 |
06-30 | ΔY=(37.9f-17.07)×100% | 0.001 |
07-10 | ΔY=(36.7f-26.39)×100% | 0.001 |
07-20 | ΔY=(35.9f-18.98)×100% | 0.001 |
注:ΔY表示湖南省早稻产量丰歉值预报,f表示从播种到预报时间止的早稻气候适宜指数。 |
Table 3 Correlation coefficients between ten-day climate factors and bumper or poor harvest of early rice yield in Hunan Province
时间 | 相关系数 | ||
平均温度 | 降水量 | 日照时数 | |
3月下旬 | 0.1034 | -0.0557 | 0.1356 |
4月上旬 | -0.1861 | 0.0020 | -0.2122 |
4月中旬 | 0.0694 | 0.0172 | 0.0150 |
4月下旬 | -0.1519 | -0.1392 | 0.0606 |
5月上旬 | 0.2481 | -0.1633 | 0.3845 |
5月中旬 | 0.1655 | -0.1668 | 0.1368 |
5月下旬 | 0.0326 | 0.1756 | -0.0387 |
6月上旬 | -0.2882 | 0.0052 | -0.1673 |
6月中旬 | -0.1820 | -0.3055 | 0.1947 |
6月下旬 | -0.1389 | -0.0346 | -0.0284 |
7月上旬 | 0.1567 | -0.2169 | 0.1942 |
7月中旬 | -0.0906 | 0.0058 | -0.0592 |
Table 4 Dynamic forecasting models for bumper or poor harvest of early rice yield based on key meteorological factors in Hunan Province
预报时间 | 预报模型 | 显著性水平 |
04-30 | ΔY=(0.075xM-0.043xA+2.91)×100% | 未达到0.10显著性水平 |
05-10 | ΔY=(0.171x1-4.58)×100% | 0.02 |
05-20 | ΔY=(0.163x1+0.46x2-14.56)×100% | 0.01 |
05-31 | ΔY=(0.15x1+0.55x2+0.031x3-18.11)×100% | 0.01 |
06-10 | ΔY=(0.12x1+0.60x2+0.037x3-1.40x4+16.92)×100% | 0.01 |
06-20 | ΔY=(0.11x1+0.45x2+0.034x3-1.425x4-0.049x5+25.09)×100% | 0.001 |
06-30 | ΔY=(0.12x1+0.64x2+0.041x3-1.38x4-0.057x5-1.6x6+62.01)×100% | 0.001 |
07-10 | ΔY=(0.11 x1+0.83x2+0.029x3-1.38x4-0.063x5-1.76x6-0.054x7+66.79)×100% | 0.001 |
07-20 | ΔY=(0.11x1+0.79x2+0.028x3-1.36x4-0.060x5-1.71x6-0.057x7-0.39x8+76.70)×100% | 0.001 |
注:ΔY表示湖南省早稻产量丰歉值预报,xM表示3月下旬日照时数,xA表示4月下旬降水量,x1表示5月上旬日照时数,x2表示5月中旬平均气温,x3表示5月下旬降水量,x4表示6月上旬平均气温,x5表示6月中旬降水量,x6表示6月下旬平均气温,x7表示7月上旬降水量,x8表示7月中旬平均气温。 |
Table 5 Fitting test for dynamic forecasting method of early rice yield based on climatic suitability from 1962 to 2002
预报时间 | 趋势预报准确性/% | 预报准确率/% | 误差5%以内样本百分率/% | 误差7%以内样本百分率/% |
05-10 | 66 | 94.5 | 54 | 68 |
05-20 | 71 | 94.6 | 56 | 73 |
05-31 | 68 | 94.6 | 59 | 68 |
06-10 | 66 | 94.3 | 51 | 66 |
06-20 | 73 | 94.5 | 51 | 66 |
06-30 | 73 | 94.5 | 54 | 66 |
07-10 | 71 | 94.7 | 61 | 68 |
07-20 | 71 | 94.7 | 56 | 68 |
Table 6 Fitting test for dynamic forecasting method of early rice yield based on key meteorological factors from 1962 to 2002
预报时间 | 趋势预报准确性/% | 预报准确率/% | 误差5%以内样本百分率/% | 误差7%以内样本百分率/% |
05-10 | 54 | 94.3 | 54 | 66 |
05-20 | 63 | 94.4 | 54 | 69 |
05-31 | 59 | 94.4 | 51 | 66 |
06-10 | 61 | 94.4 | 54 | 66 |
06-20 | 68 | 94.5 | 49 | 63 |
06-30 | 71 | 95.2 | 56 | 63 |
07-10 | 71 | 95.2 | 59 | 73 |
07-20 | 68 | 95.2 | 61 | 73 |
Table 7 Fitting test for dynamic forecasting method of early rice yield based on crop growth simulation model from 1962 to 2002
预报时间 | 趋势预报准确性/% | 预报准确率/% | 误差5%以内样本百分率/% | 误差7%以内样本百分率/% |
04-30 | 66 | 93.6 | 59 | 63 |
05-10 | 54 | 93.6 | 51 | 63 |
05-20 | 59 | 94.1 | 56 | 63 |
05-31 | 54 | 93.9 | 59 | 76 |
06-10 | 54 | 93.6 | 46 | 59 |
06-20 | 59 | 93.8 | 56 | 63 |
06-30 | 59 | 94.0 | 59 | 61 |
07-10 | 66 | 93.8 | 66 | 73 |
07-20 | 66 | 93.9 | 59 | 71 |
Table 8 Extrapolation test for dynamic forecasting method of early rice yield based on climatic suitability from 2003 to 2012
预报时间 | 趋势预报准确性/% | 预报准确率/% | 误差5%以内样本百分率/% | 误差7%以内样本百分率/% |
05-10 | 50 | 96.5 | 60 | 100 |
05-20 | 60 | 97.0 | 70 | 90 |
05-31 | 60 | 96.0 | 60 | 80 |
06-10 | 50 | 95.5 | 30 | 70 |
06-20 | 60 | 96.5 | 50 | 80 |
06-30 | 60 | 96.6 | 50 | 80 |
07-10 | 60 | 96.2 | 40 | 80 |
07-20 | 60 | 96.1 | 50 | 80 |
Table 9 Extrapolation test for dynamic forecasting method of early rice yield based on key meteorological factors from 2003 to 2012
预报时间 | 趋势预报准确性/% | 预报准确率/% | 误差5%以内样本百分率/% | 误差7%以内样本百分率/% |
05-10 | 60 | 95.9 | 50 | 90 |
05-20 | 50 | 95.8 | 50 | 90 |
05-31 | 50 | 95.6 | 60 | 90 |
06-10 | 40 | 95.5 | 60 | 90 |
06-20 | 50 | 95.2 | 50 | 60 |
06-30 | 50 | 96.0 | 60 | 90 |
07-10 | 70 | 95.9 | 70 | 80 |
07-20 | 60 | 96.2 | 70 | 80 |
Table 10 Extrapolation test for dynamic forecasting method of early rice yield based on crop growth simulation model from 2003 to 2012
预报时间 | 趋势预报准确性/% | 预报准确率/% | 误差5%以内样本百分率/% | 误差7%以内样本百分率/% |
04-30 | 60 | 97.0 | 80 | 90 |
05-10 | 50 | 96.8 | 90 | 90 |
05-20 | 50 | 96.7 | 90 | 90 |
05-31 | 50 | 96.7 | 80 | 90 |
06-10 | 50 | 96.4 | 70 | 90 |
06-20 | 40 | 94.7 | 50 | 70 |
06-30 | 50 | 94.1 | 60 | 70 |
07-10 | 50 | 94.7 | 60 | 60 |
07-20 | 50 | 95.3 | 60 | 60 |
[1] |
莫喆, 刘中秋, 吴永常.国内外农业生产监测及产量预报系统的现状与分析.农业信息科学, 2008, 24(5):434-437. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200805092.htm
|
[2] |
Douglas K B, Mark A F.Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics.Agricultural and Forest Meteorology, 2013, 173:74-84. doi: 10.1016/j.agrformet.2013.01.007
|
[3] |
Juraj B, van der Velde M, Erwin S, et al.Pan-European crop modelling with EPIC:Implementation, up-scaling and regional crop yield validation.Agricultural Systems, 2013, 120:61-75. doi: 10.1016/j.agsy.2013.05.008
|
[4] |
Yannick C, de Wit A, Gregory D, et al.Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment.Agricultural and Forest Meteorology, 2011, 151:1843-1855. doi: 10.1016/j.agrformet.2011.08.002
|
[5] |
兰洪第, 段运怀, 章庆辰, 等.东北地区粮豆产量预报.科学通报, 1982, 27(6):383. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198206021.htm
|
[6] |
赵四强.应用海温预报粮食产量的初步探讨.科学通报, 1982, 27(20):126-127. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC198304004.htm
|
[7] |
钱拴, 王建林.农业气象作物产量预报的特点与思考.气象科技, 2003, 31(5):33-38. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200305000.htm
|
[8] |
王石立, 马玉平, 刘文泉, 等.面向Internet的农业气象产量动态预报.气象, 2004, 30(4):42-46. doi: 10.7519/j.issn.1000-0526.2004.04.011
|
[9] |
王建林, 宋迎波.棉花产量动态预测方法研究.中国棉花, 2002, 29(9):5-7. http://www.cnki.com.cn/Article/CJFDTOTAL-ZMZZ200209002.htm
|
[10] |
王建林, 杨霏云, 宋迎波.西北地区玉米产量动态业务预报方法探讨.应用气象学报, 2004, 15(1):51-57. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040107&flag=1
|
[11] |
宋迎波, 王建林, 陈晖, 等.中国油菜产量动态预报方法研究.气象, 2008, 34(3):93-99. doi: 10.7519/j.issn.1000-0526.2008.03.014
|
[12] |
宋迎波, 王建林, 杨霏云.粮食安全气象服务.北京:气象出版社, 2006:188-195.
|
[13] |
杨霏云, 王建林.晚稻单产动态预测方法研究.气象科技, 2005, 33(5):433-436. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200505010.htm
|
[14] |
郑昌玲, 杨霏云, 王建林, 等.早稻产量动态预报模型.中国农业气象, 2007, 28(4):412-416. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY200704017.htm
|
[15] |
郑昌玲, 王建林, 宋迎波, 等.大豆产量动态预报模型研究.大豆科学, 2008, 27(6):943-948. http://www.cnki.com.cn/Article/CJFDTOTAL-DDKX200806012.htm
|
[16] |
杜春英, 李帅, 王晾晾, 等.基于历史产量丰歉影响指数的黑龙江省水稻产量动态预报.中国农业气象, 2010, 31(3):427-430. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201003020.htm
|
[17] |
魏瑞江, 宋迎波, 王鑫.基于气候适宜度的玉米产量动态预报方法.应用气象学报, 2009, 20(5):622-626. doi: 10.11898/1001-7313.20090514
|
[18] |
刘伟昌, 陈怀亮, 余卫东, 等.基于气候适宜度指数的冬小麦动态产量预报技术研究.气象与环境科学, 2008, 31(2):21-24. http://www.cnki.com.cn/Article/CJFDTOTAL-HNQX200802005.htm
|
[19] |
李曼华, 薛晓萍, 李鸿怡.基于气候适宜度指数的山东省冬小麦产量动态预报.中国农学通报, 2012, 28(12):291-295. doi: 10.11924/j.issn.1000-6850.2012-0337
|
[20] |
游超, 蔡元刚, 张玉芳.基于气象适宜指数的四川盆地水稻气象产量动态预报技术研究.高原山地气象研究, 2011, 31(1):51-55. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201101009.htm
|
[21] |
钱锦霞, 郭建平.郑州地区冬小麦产量构成要素的回归模型.应用气象学报, 2012, 23(4):500-504. doi: 10.11898/1001-7313.20120414
|
[22] |
刘布春, 王石立, 马玉平.国外作物模型区域应用研究进展.气象科技, 2002, 30(4):194-203. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200204000.htm
|
[23] |
高永刚, 王育光, 殷世平, 等.世界粮食研究模型在黑龙江省作物产量预报中的应用.中国农业气象, 2006, 27(1):27-30. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY200601008.htm
|
[24] |
高永刚, 顾红, 姬菊枝, 等.近43年来黑龙江气候变化对农作物产量影响的模拟研究.应用气象学报, 2007, 18(4):532-538. doi: 10.11898/1001-7313.20070414
|
[25] |
袁东敏, 尹志聪, 郭建平.SRES B2气候情景下东北玉米产量变化数值模拟.应用气象学报, 2014, 25(3):284-292. doi: 10.11898/1001-7313.20140304
|
[26] |
帅细强, 王石立, 马玉平.基于水稻生长模型的气象影响评价和产量动态预测.应用气象学报, 2008, 19(1):71-81. doi: 10.11898/1001-7313.20080112
|
[27] |
高亮之.农业模型学基础.上海:天马图书有限公司, 2004:186-206.
|
[28] |
潘学标.作物模型原理.北京:气象出版社, 2003:273-303.
|
[29] |
马玉平, 王石立, 王馥棠.作物模拟模型在农业气象业务应用中的研究初探.应用气象学报, 2005, 16(3):293-303. doi: 10.11898/1001-7313.20050303
|
[30] |
刘春, 张春辉, 郭萨萨.基于能量模型的水稻生长模型.应用气象学报, 2013, 24(2):240-247. doi: 10.11898/1001-7313.20130212
|
[31] |
薛昌颖, 杨晓光, Bam B, 等.ORYZA2000模型模拟北京地区旱稻的适应性初探.作物学报, 2005, 31(12):1567-1571. doi: 10.3321/j.issn:0496-3490.2005.12.007
|
[32] |
韩家炜, 堪博.数据挖掘:概念与技术.北京:机械工业出版社, 2007:8-21.
|
[33] |
王海峰, 张健, 黄晓亚.数据挖掘技术及其在渔情预报中的应用.计算机时代, 2007(11):52-53. doi: 10.3969/j.issn.1006-8228.2007.11.020
|
[34] |
石扬, 张燕平, 赵姝, 等.基于商空间的气象时间序列数据挖掘研究.计算机工程与应用, 2007, 43(1):201-203. http://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200701059.htm
|
[35] |
Kropff M J, van Laar H H, Ten B H F M.ORYZA1:A Basic Model for Irrigated Lowland Rice Production.Wageningen:Centre for Agrobiological Research, 1993:76-83.
|
[36] |
Kropff M J, van Laar H H, Matthews R.ORAZA1, An Eco-physiological Model for Irrigation Rice Production.SARP Research Proceedings, 1994:110.
|
[37] |
Bouman B A M, van Keulen, van Laar H H, et al.The school of de Wit crop growth simulation models:A pedigree and historical overview.Agricultural Systems, 1996, 52:171-198. doi: 10.1016/0308-521X(96)00011-X
|
[38] |
Matthews R B, Hunt L A.A model describing the growth of cassava.Field Crops Res, 1994, 36:69-84. doi: 10.1016/0378-4290(94)90054-X
|