Liu Liping, Wu Chong, Wang Xudong, et al. Test and calibration methods for X-band active phased-array weather radar. J Appl Meteor Sci, 2015, 26(2): 129-140. DOI:  10.11898/1001-7313.20150201.
Citation: Liu Liping, Wu Chong, Wang Xudong, et al. Test and calibration methods for X-band active phased-array weather radar. J Appl Meteor Sci, 2015, 26(2): 129-140. DOI:  10.11898/1001-7313.20150201.

Test and Calibration Methods for X-band Active Phased-array Weather Radar

DOI: 10.11898/1001-7313.20150201
  • Received Date: 2014-10-31
  • Rev Recd Date: 2015-01-12
  • Publish Date: 2015-03-31
  • A mobile X-band phased-array meteorological radar (XPAR) is developed by State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, and Anhui Sun-create Electronics Limited Company. The XPAR scans electronically in elevation while scanning mechanically in azimuth, transmits radar wave with wide beam width (about 20° in vertical direction and 1° in horizontal direction) and receives 14 beams simultaneously. As reflectivity calibration is key technique for the active phased-array radar application in meteorological observation, the testing and calibrating method for the XPAR is investigated according to characteristics of the transmitter/receiver (T/R) the multi-beam work mode. The test and calibration focus on the antennas, T/R, purse compress and the variations of gain and beam width with the angle of the antenna beam in respect to the normal of the array face, in order to reduce the observation bias introduced by different modes. After calibration, the XPAR is used to observe 3-D structures and evolutions of convective precipitation in field experiment at Dingyuan of Anhui Province and Ganzi of Sichuang Province from May to August in 2014. The data of an S-band operational radar (SA) and a C-band polarization radar (CPOL) nearby are used to examine the observation capability of the XPAR. Results show that the antenna gain and its variation with the scanning angle, the beam direction, dynamics ranges of T/R are in conformity with the design. The transmitter and receiving characteristics for 128 T/R are similar. The calibration bias for reflectivity and radial velocity measurement are less than 0.98 dB and 0.1 m·s-1, respectively. Variations of T/R parameters in observation are watched and corrected by the correcting network. Comparing with the SA and CPOL, the bias of reflectivity in Fine Mode is less than 1 dB, the biases for Guard Mode and Quick Mode are less than 2 dB, and the velocity observed in three modes are accordant very well. The bias of reflectivity and radial velocity by XPAR are reasonable. The horizontal and vertical structures of precipitation observed by 3 radars are similar. And calibration results provide basis for quantitative measurement of the XPAR.
  • Fig. 1  System frame diagram of XPAR

    Fig. 2  Normalized directivity diagram of XPAR

    (a) emitting waveforms for GM, (b) emitting waveforms for QM, (c) emitting waveforms for FM, (d) receiving waveforms for elevation of 0°, (e) receiving waveforms for elevation of-9.5°, (f) receiving waveforms for elevation of 9.5°, (g) receiving waveforms for elevation of 19.5°, (h) receiving waveforms for elevation of 29.5°

    Fig. 3  Test process chart of digital T/R component

    Fig. 4  Dynamic characteristic curve of digital T/R component for single T/R (a), for total system (b)

    Fig. 5  Reflectivity PPI observed by XPAR with FM, QM, GM and by CPOL at Dingyuan and SA at Hefei in Anhui Province during 1124—1132 BT on 24 May 2014 and reflectivity PPI observed by XPAR with FM, QM and GM at Ganzi in Sichuan Province during 1845-1854 BT on 10 Jul 2014

    (elevation:3.5°; the distance between adjacent circles is 15 km)

    Fig. 6  The same as in Fig. 5, but for reflectivity RHI along the azimuths marked in Fig. 5

    Fig. 7  Ridail velocity PPI observed by XPAR with FM, QM, GM at Dingyuan in Anhui Province during 1124-1132 BT on 24 May 2014 and the PPI observed by XPAR with FM, QM and GM during at Ganzi in Sichuan Province 1845-1854 BT on 10 Jul 2014

    (elevation:3.5°; the distance between adjacent circles is 15 km)

    Fig. 8  Variations of radical velocity and spectrum width along range direction for azimuth of 319° at elevation angle of 2.5° observed by XPAR with FM and CPOL

    Table  1  Parameters of XPAR for three work modes

    雷达参数 精细测量 警戒搜索 快速观测
    扫描策略 单波束顺序扫描 发射赋形波束14路接收 发射展宽波束4路接收
    发射波束宽度 (法向)/(°) 0.61 20 4
    接收波束宽度 (法向)/(°) 0.88 0.88 0.88
    发射波束增益 (法向)/dB ≥46 15~36 ≥37
    接收波束增益 (法向)/dB ≥44.4 ≥44.4 ≥44.4
    发射波位分布 自0.5°起以1°的步进角扫描至39.5° 赋形波束覆盖0°至20° 自2°起以4°的步进角扫描至38°
    接收波位分布 自0.5°起以1°的步进角
    扫描至39.5°
    14路接收波束
    分布同VCP11
    4路接收波束分布于发射
    波束±0.5°,±1.5°
    脉冲积累点数* 64 128 64
    俯仰电扫描速度/(ms/层) 41.7 11.9 10.4
    PPI用时/s 600 60 150
    天线转速/((°)·s-1) 0.6 6 2.4
      注:*表示该参数为2014年测试及外场试验使用值。
    DownLoad: Download CSV

    Table  2  Test of receiving waveform of XPAR

    波位/(°) 理论波束指向/(°) 实测波束指向/(°) 理论波束宽度/(°) 实测波束宽度/(°)
    0 10 10 0.88 0.9
    -9.5 0.5 0.5 0.9 0.9
    9.5 19.5 19.5 0.9 0.9
    19.5 29.5 29.5 0.94 0.9
    29.5 39.5 39.5 1.01 1
    DownLoad: Download CSV

    Table  3  Test record of digital T/R component

    通道 脉冲宽度/μs 发射功率/W 带宽/MHZ 改善因子/dB
    1 35.4 8.25 3.02 60.35
    2 35.7 8.70 3.02 58.89
    3 35.7 9.82 3.02 59.16
    4 35.7 9.26 3.04 61.07
    5 35.7 9.22 3.02 58.32
    6 35.6 9.19 3.02 58.85
    7 35.7 8.87 3.01 59.12
    8 35.7 9.52 3.01 60.11
    9 35.7 8.82 3.02 58.87
    10 35.6 8.49 3.02 60.83
    11 35.7 9.57 3.02 59.79
    12 35.7 9.06 3.02 60.59
    13 35.7 8.19 3.02 59.91
    14 35.7 8.64 3.02 59.94
    15 35.7 8.82 3.02 59.12
    16 35.7 9.24 3.02 60.18
    指标要求 33.3 ≥8 3 ≥55
    DownLoad: Download CSV

    Table  4  Calibration accuracy of reflectivity for DVIP of XPAR

    注入信号/dBm 25 km 50 km 75 km 100 km
    单波束/dB 多波束/dB 单波束/dB 多波束/dB 单波束/dB 多波束/dB 单波束/dB 多波束/dB
    -24.3 -0.26 0.09 -0.26 0.08 -0.26 0.08 -0.26 0.08
    -34.3 -0.16 0.18 -0.17 0.17 -0.17 0.17 -0.17 0.28
    -44.3 0.08 0.37 0.08 0.37 0.07 0.36 0.08 0.37
    -54.3 0.13 0.42 0.12 0.41 0.12 0.41 0.12 0.41
    -64.3 0.02 0.21 0.01 0.21 0.01 0.20 0.02 0.21
    -74.3 -0.44 -0.55 -0.44 -0.55 -0.45 -0.55 -0.44 -0.55
    -84.3 -0.98 0.40 -0.94 0.40 -0.95 0.40 -0.94 0.40
    DownLoad: Download CSV
  • [1]
    葛润生, 刘恩清.CAMS多普勒天气雷达探测能力的估算.应用气象学报, 1989, 4(2):133-139. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19890220&flag=1
    [2]
    王立轩, 秦勇.新一代天气雷达的自动标校技术.气象科技, 2001, 29(3):26-29. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200103004.htm
    [3]
    柴秀梅, 黄晓, 黄兴玉.新一代天气雷达回波强度自动标校技术.气象科技, 2007, 35(3):418-422. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200703025.htm
    [4]
    潘新民, 柴秀梅, 崔柄俭, 等.CINRAD/SB雷达回波强度定标调校方法.应用气象学报, 2011, 21(6):739-746. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100611&flag=1
    [5]
    葛润生, 朱晓燕.提高多普勒天气雷达晴空探测能力的一种方法.应用气象学报, 2000, 11(3):249-263. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000340&flag=1
    [6]
    钟刘军, 阮征, 葛润生, 等.风廓线雷达回波信号强度定标方法.应用气象学报, 2010, 21(5):598-605. doi:  10.11898/1001-7313.20100509
    [7]
    Zrnic D S, Kimpel J F, Forsyth D E, et al.Agile-beam phased array radar for weather observations.Bull Amer Meteor Soc, 2007, 88(11):1753-1766. doi:  10.1175/BAMS-88-11-1753
    [8]
    Heinselman P L, Priegnitz D L, Manross K L, et al.Rapid sampling of severe storms by the national weather radar testbed phased array radar.Wea Forecasting, 2008, 23(5):808-824. doi:  10.1175/2008WAF2007071.1
    [9]
    Wurman J, Dowell D, Richardson Y, et al.The second verification of the origins of rotation in tornadoes experiment:VORTEX2.Bull Amer Meteor Soc, 2012, 93(8):1147-1170. doi:  10.1175/BAMS-D-11-00010.1
    [10]
    French M M, Bluestein H B, PopStefanija I, et al.Reexamining the vertical development of tornadic vortex signatures in supercells.Mon Wea Rev, 2013, 141(12):4576-4601. doi:  10.1175/MWR-D-12-00315.1
    [11]
    French M M, Bluestein H B, PopStefanija I, et al.Mobile, phased-array, Doppler radar observations of tornadoes at X band.Mon Wea Rev, 2014, 142(3):1010-1036. doi:  10.1175/MWR-D-13-00101.1
    [12]
    Venkatesh V, Frasier S J.Simulation of spaced antenna wind retrieval performance on an X-band active phased array weather radar.J Atmos Ocean Tech, 2013, 30(7):1447-1459. doi:  10.1175/JTECH-D-11-00203.1
    [13]
    Flores-Vidal X, Flament P, Durazo R, et al.High-frequency radars:Beamforming calibrations using ships as reflectors.J Atmos Ocean Tech, 2013, 30(3):638-648. doi:  10.1175/JTECH-D-12-00105.1
    [14]
    高玉春. 机载气象雷达探测系统总体关键技术研究. 北京: 北京邮电大学, 2009: 32-35.
    [15]
    杨金红, 高玉春, 程明虎, 等.相控阵天气雷达波束特性.应用气象学报, 2009, 20(1):119-123. doi:  10.11898/1001-7313.20090116
    [16]
    张志强, 刘黎平.相控阵技术在天气雷达中的初步应用.高原气象, 2011, 30(4):1102-1107. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201104028.htm
    [17]
    Wu C, Liu L.Comparison of the observation capability of an X-band phased-array radar with an X-band Doppler radar and s-band operational radar.Adv Atmos Sci, 2014, 31(4):814-824. doi:  10.1007/s00376-013-3072-5
    [18]
    吴翀, 刘黎平, 张志强.S波段相控阵天气雷达与新一代多普勒天气雷达定量对比方法及其初步应用.气象学报, 2014, 72(2):390-401. doi:  10.11676/qxxb2014.021
    [19]
    吴翀, 刘黎平, 汪旭东, 等.相控阵雷达扫描方式对回波强度测量的影响.应用气象学报, 2014, 25(4):406-414. doi:  10.11898/1001-7313.20140403
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(4)

    Article views (3742) PDF downloads(2460) Cited by()
    • Received : 2014-10-31
    • Accepted : 2015-01-12
    • Published : 2015-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint