Wu Qingmei, Liu Zhuo, Wang Guorong, et al. The influence of boundary layer east wind on a North China rainstorm. J Appl Meteor Sci, 2015, 26(2): 160-172. DOI:  10.11898/1001-7313.20150204.
Citation: Wu Qingmei, Liu Zhuo, Wang Guorong, et al. The influence of boundary layer east wind on a North China rainstorm. J Appl Meteor Sci, 2015, 26(2): 160-172. DOI:  10.11898/1001-7313.20150204.

The Influence of Boundary Layer East Wind on a North China Rainstorm

DOI: 10.11898/1001-7313.20150204
  • Received Date: 2014-07-24
  • Rev Recd Date: 2014-12-05
  • Publish Date: 2015-03-31
  • Using conventional observations, 1°×1° NCEP analysis data, ground-based radiometer data, FY-2E meteorolgical satellite and radar data, the boundary layer east wind and its influence on a North China rainstorm on 4 Jun 2013 is analyzed.The boundary layer east wind is from Northeast China Plain, and it becomes moist when passing the Bohai Sea, resulting in cooling in boundary layer, and the sharpest drop is about 9℃ at 925 hPa. The east wind influencing area is within about 300 km. The east wind and according temperature change are monitored accurately by the ground-based radiometer and profile radar, and the storm is triggered after the temperature decreases for about 5 hours.Main influencing weather systems of the rainstorm are the boundary layer east wind, wind shear at mid-low level, southwest low-level jet at 700 hPa and small-scale low trough at 500 hPa. The cold air caused by the boundary layer east wind meets the warm southwest air on the windward area of the Taihang and Yan Mountains, and the cold front is formed near Beijing area. The front lift and topographic lift effects are obvious and the according upward motion is about-0.8 Pa·s-1, which strengthens upward motion of the warm and moist air near 700 hPa at the north of Beijing. The east wind leads to cooling cushion and temperature inversion at boundary level, and cooling cushion effect triggers the thunderstorm again to some extent, which is generated above the boundary layer, and the most unstable convective available energy reaches 1517.5 J·kg-1. The elevated thunderstorm is found first to the east of the Taihang Mountains because of topographic lift effect. The analysis of infrared TBB of FY-2E shows that middle convective systems develop obviously when they move near the cold front of east wind. The thunderstorm occurs again just over the east wind cooling cushion area according to radar reflectivity.The moist is sent to the storm area by east winds from boundary layer and southwest winds at mid-low level. The mid-low level warm moist air leads to the increase of stratification convective instability, and at 850 hPa is 8.2 K and 11.7 K more than that of 500 hPa at 0800 BT and 2000 BT, respectively. There is strong dynamic instability over the storm area because the distinct vertical wind shear is formed by boundary layer east winds and strong southwest winds at middle level.
  • Fig. 1  Observed 24 h rainfall (number, unit:mm) from 0800 BT 4 Jun to 0800 BT 5 Jun in 2013 with terrain (the shaded)(a) and 500 hPa geopotential height (contour, unit:dagpm) and winds at 0800 BT 4 Jun 2013(barb)(the thick solid is trough line)(b)

    Fig. 2  Sea level pressure (solid line, unit:hPa) and 2 m wind at 2000 BT 3 Jun 2013(a), 0800 BT 4 Jun 2013(b) and wind observed by auto weather stations at 0000 BT 4 Jun 2013(c), 0400 BT 4 Jun 2013(d)(the double line denotes wind shear, the thick solid line denotes cold front, the arrow denotes the path of east wind, the dot denotes the wind speed is zero)

    Fig. 3  Temperature (solid line, unit:℃) and wind at 0800 BT 4 Jun 2013 (the double line denotes warm wind shear line) (a)925 hPa, (b)700 hPa

    Fig. 4  Wind of different heights observed by wind profile radar at Haidian Station in Beijing on 4 June 2013

    Fig. 5  Temperature (unit:℃) of different altitudes observed by radiometer at Beijing Weather Observatory from 3 Jun to 4 Jun in 2013

    Fig. 6  The zonal cross-section of q (dashed line, unit:g·kg-1) and wind (barb) along 40°N

    (a)2000 BT 3 Jun 2013, (b)0200 BT 4 Jun 2013, (c)0800 BT 4 Jun 2013

    Fig. 7  The vertical velocity from 4 June to 5 Jun in 2013(unit:Pa·s-1)

    (a)850 hPa at 0800 BT 4 Jun, (b)700 hPa at 0800 BT 4 Jun, (c)700 hPa at 2000 BT 4 Jun, (d)850 hPa at 0200 BT 5 Jun

    Fig. 8  The zonal cross-section of vertical velocity (contour, unit:Pa·s-1) and wind (barb) at 0800 BT (a) and 2000 BT (b) on 4 Jun 2013 along 40°N

    Fig. 9  Sea level pressure (solid line, unit:hPa) and 2 m wind (barb)(a), temperature (contour, unit:℃) and wind (barb) of 700 hPa (b) at 2000 BT 4 Jun 2013

    Fig. 10  Distribution of temperature of black body from infared images of FY-2E at 0700 BT (a) and 1000 BT (b) on 4 Jun 2013

    Fig. 11  Combined radar reflectivity above 15 dBZ of Beijing Weather Observatory on 4 Jun 2013

    Fig. 12  The zonal cross-section of temperature (dashed, unit:℃) and θse(solid line, unit:K) along 40°N at 0800 BT (a) and 2000 BT (b) on 4 Jun 2013

  • [1]
    郭虎, 段丽, 杨波, 等.0679香山局地大暴雨的中小尺度天气分析.应用气象学报, 2008, 19(3):265-275. doi:  10.11898/1001-7313.20080302
    [2]
    吴庆梅, 杨波, 王国荣, 等.北京地形和热岛效应对一次β中尺度暴雨的作用.气象, 2012, 38(2):174-181. doi:  10.11676/qxxb2012.017
    [3]
    孙继松, 杨波.地形与城市环流共同作用下的β中尺度暴雨.大气科学, 2008, 32(6):1352-1364. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200806010.htm
    [4]
    孙继松.气流的垂直分布对地形雨落区的影响.高原气象, 2005, 24(1):62-69. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200501009.htm
    [5]
    何群英, 孙一昕, 于莉莉.渤海西岸边界层东风与暴雪天气的机理分析.气象与环境学报, 2011, 27(4):66-71. http://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201104013.htm
    [6]
    李青春, 程丛兰, 高华, 等.北京一次冬季回流暴雪天气过程的数值分析.气象, 2011, 37(11):1380-1388. doi:  10.7519/j.issn.1000-0526.2011.11.008
    [7]
    赵思雄, 孙建华, 陈红, 等.北京"12.7"降雪过程的分析研究.气象与环境研究, 2002, 7(1):8-20. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200201001.htm
    [8]
    孙继松, 梁丰, 陈敏, 等.北京地区一次小雪天气过程造成路面交通严重受阻的成因分析.大气科学, 2003, 27(6):1057-1066. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200306008.htm
    [9]
    蒋建莹, 史历, 倪允琪.一次“高影响天气”的弱降雪过程的数值研究.应用气象学报, 2005, 16(2):231-236. doi:  10.11898/1001-7313.20050228
    [10]
    张迎新, 张守保.华北平原回流天气的结构特征.南京气象学院学报, 2006, 29(1):107-113. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200601015.htm
    [11]
    吴庆梅, 杨波, 王国荣.北京地区一次回流暴雪过程的锋区特征分析.高原气象, 2014, 33(2):539-547. doi:  10.7522/j.issn.1000-0534.2012.00194
    [12]
    仪清菊, 刘延英, 许晨海.北京1980—1994年降雪的天气气候分析.应用气象学报, 1999, 10(2):249-254. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990253&flag=1
    [13]
    王迎春, 钱婷婷, 郑永光.北京连续降雪过程分析.应用气象学报, 2004, 15(1):58-65. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040108&flag=1
    [14]
    河北省气象局.河北省天气预报手册.北京:气象出版社, 1987.
    [15]
    北京市气象局. 北京地区预报员手册. 北京: 北京市气象局, 2010.
    [16]
    孙继松, 王华, 王令, 等.城市边界层过程在北京2004年7月10日局地暴雨过程中的作用.大气科学, 2006, 30(2):265-275. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200602004.htm
    [17]
    陈明轩, 俞小鼎, 谭晓光, 等.北京2004年“7.10”突发性对流强降水的雷达回波特征分析.应用气象学报, 2006, 17(3):333-344. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060359&flag=1
    [18]
    张一平, 俞小鼎, 孙景兰, 等.2012年早春河南一次高架雷暴的天气成因分析.气象, 2014, 40(1):48-58. doi:  10.7519/j.issn.1000-0526.2014.01.006
    [19]
    陈明轩, 王迎春, 高峰, 等.基于雷达资料4DVar的低层热力反演系统及其在北京奥运期间的初步应用分析.气象学报, 2011, 69(1):64-78. doi:  10.11676/qxxb2011.006
    [20]
    陈明轩, 高峰, 孔荣, 等.自动临近预报系统及其在北京奥运期间的应用.应用气象学报, 2010, 21(4):395-404. doi:  10.11898/1001-7313.20100402
    [21]
    Wilson J W, Roberts R D.Summary of convective storm initiation and evolution during IHOP:Observational and modeling perspective.Mon Wea Rev, 2006, 134:23-47. doi:  10.1175/MWR3069.1
    [22]
    俞小鼎, 周晓岗, 王秀明.雷暴与强对流临近天气预报技术进展.气象学报, 2012, 70(3):311-337. doi:  10.11676/qxxb2012.030
    [23]
    农孟送, 赖珍全, 梁俊聪, 等.2012年早春广西高架雷暴冰雹天气过程分析.气象, 2013, 39(7):874-882. doi:  10.7519/j.issn.1000-0526.2013.07.008
  • 加载中
  • -->

Catalog

    Figures(12)

    Article views (4229) PDF downloads(729) Cited by()
    • Received : 2014-07-24
    • Accepted : 2014-12-05
    • Published : 2015-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint