Sun Jing, Cheng Guangguang, Zhang Xiaoling. An improved bias removed method for precipitation prediction and its application. J Appl Meteor Sci, 2015, 26(2): 173-184. DOI:  10.11898/1001-7313.20150205.
Citation: Sun Jing, Cheng Guangguang, Zhang Xiaoling. An improved bias removed method for precipitation prediction and its application. J Appl Meteor Sci, 2015, 26(2): 173-184. DOI:  10.11898/1001-7313.20150205.

An Improved Bias Removed Method for Precipitation Prediction and Its Application

DOI: 10.11898/1001-7313.20150205
  • Received Date: 2014-11-07
  • Rev Recd Date: 2015-01-09
  • Publish Date: 2015-03-31
  • On the basis of traditional bias removed (BR) method, grading bias removed (GBR) method is designed by adding the step of correcting according to three precipitation orders, which are more than 0.1 mm, 25 mm and 50 mm, respectively. Then, using observations of precipitation and numerical precipitation prediction of ECMWF from April to August in 2011 and 2012, the real-time precipitation forecast of 1-5 days at summer (June-August) over China in 2012 is corrected by GBR method using two different training periods, i.e., the mixed training phase and 60-day running training phase, and the results of them are called GBR_h and GBR_60, respectively. In order to contain information of heavy precipitation in forecast phase as much as possible, the mixed training period is composed of a 30-day period before the forecast phase and two 15-day periods before and after the same phase one year ago, according to characteristics of summer monsoon rainfall of China.Equitable-threat scores (ETS) of forecast over China at many thresholds of precipitation are examined, in order to compare results of the mixed training and the 60-day running training period using GBR. It reveals that both of two corrected results have higher skill than precipitation prediction of ECMWF, at the threshold of beneath 25 mm, the improving amplitude of them are very close (the improvement of GBR_h and GBR_60 are 19.5% and 19.1%, respectively). However, for those above 25 mm, GBR_h apparently has bigger amplitude which is up to 73.5%, and GBR_60 is only 55.9%. Especially in the situation of correcting the local heavy precipitation prediction, the correcting effect of GBR_h is much better. Furthermore, the correlation coefficient is also calculated, and the result shows that the pattern of precipitation prediction is also modified by GBR_h and GBR_60, and the former also has better performance.By analyzing errors of three orders calculated through two different training periods, it is clear that the key point of successfully improving the initial ECMWF forecasts is to add the step of grading bias removed, and a larger improvement of ETS can be expected if more appropriate mixed training period is chosen. It is assumed that according to the obvious effect of this experiment which are easy to apply in operation, this grading bias-removing method of mixed training period will make a very useful product for real time events and have favorable application prospects.
  • Fig. 1  Monthly mean precipitation intensity from April to August in 2011 and 2012

    Fig. 2  ETS and Bias scores from Jun to Aug in 2012 from ECMWF, GBR_60 and GBR_h

    Fig. 3  24-hour observation and 48-hour forecast over the Mid-lower Reaches of the Yangtze at 2000 BT 27 June 2012

    (the black box denotes the target domain)

    Fig. 4  The same as in Fig. 3, but for 120-hour forecast

    Fig. 5  ETS and Bias scores of 48-hour and 120-hour forecasts from ECMWF, GBR_60 and GBR_h

    Fig. 6  Bias error background of GBR_60 and GBR_h for 48-hour forecast

    (the black box denotes the target domian)

    Fig. 7  The same as in Fig. 6, but for 120-hour forecast

    Table  1  Improvement of ETS of precipitation prediction comparing GBR_h and GBR_60 with ECMWF over China (unit:%)

    方案 48 h时效 120 h时效
    降水量小于25 mm 降水量大于等于25 mm 降水量小于25 mm 降水量大于等于25 mm
    GBR_h 19.5 73.5 14.2 78.2
    GBR_60 19.1 55.9 13.5 67.3
    DownLoad: Download CSV
  • [1]
    王雨, 闫之辉.2004年汛期 (5—9月) 主客观降水预报检验.热带气象学报, 2006, 22(4):331-339. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200604003.htm
    [2]
    周慧, 崔应杰, 胡江凯, 等.T639模式对2008年长江流域重大灾害性降水天气过程预报性能的检验分析.气象, 2010, 36(9):60-67. doi:  10.7519/j.issn.1000-0526.2010.09.010
    [3]
    熊秋芬.GRAPES_Meso模式的降水格点检验和站点检验分析.气象, 2011, 37(2):185-193. doi:  10.7519/j.issn.1000-0526.2011.02.008
    [4]
    张亚萍, 程明虎, 夏文梅, 等.天气雷达回波运动场估测及在降水临近预报中的应用.气象学报, 2006, 64(5):631-646. doi:  10.11676/qxxb2006.062
    [5]
    胡胜, 罗聪, 黄晓梅, 等.基于雷达外推和中尺度数值模式的定量降水预报的对比分析.气象, 2012, 38(3):274-280. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201203004.htm
    [6]
    王建捷, 周斌, 郭肖容.不同对流参数化方案试验中凝结加热的特征及对暴雨中尺度模拟结果的影响.气象学报, 2005, 63(4):405-417. doi:  10.11676/qxxb2005.041
    [7]
    陈炯, 王建捷.边界层参数化方案对降水预报的影响.应用气象学报, 2006, 17(增刊Ⅰ):11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201619071.htm
    [8]
    汤剑平, 赵鸣, 苏炳凯.分辨率对区域气候极端事件模拟的影响.气象学报, 2006, 64(4):432-442. doi:  10.11676/qxxb2006.043
    [9]
    李莉, 朱跃建.T213降水预报订正系统的建立与研究.应用气象学报, 2006, 17(增刊Ⅰ):130-134. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2006S1018.htm
    [10]
    李莉, 李应林, 田华.T213全球集合预报系统误差订正研究.气象, 2011, 37(1):31-38. doi:  10.7519/j.issn.1000-0526.2011.01.004
    [11]
    曹晓钟, 闵晶晶, 刘还珠, 等.分类与集成方法在降雨预报中的应用.气象, 2008, 34(10):3-11. doi:  10.7519/j.issn.1000-0526.2008.10.001
    [12]
    Krishnamurti T N, Kishtawal C M.Improved weather and seasonal climate forecasts from multimodel superensemble.Science, 1999, 285:1548-1550. doi:  10.1126/science.285.5433.1548
    [13]
    Krishnamurti T N, Kishtawal C M, Shin D W, et al.Improving tropical precipitation forecasts from a multianalysis superensemble.J Climate, 2000, 13:4217-4227. doi:  10.1175/1520-0442(2000)013<4217:ITPFFA>2.0.CO;2
    [14]
    Cartwright T J, Krishnamurti T N.Warm season mesoscale superensemble precipitation forecasts in the Southeastern United States.Wea Forecasting, 2007, 22:873-886. doi:  10.1175/WAF1023.1
    [15]
    Krishnamurti T N, Gnanaseelan C, Chakraborty A, et al.Prediction of the diurnal change using a multimodel superensemble.Part Ⅰ:Precipitation.Mon Wea Rev, 2007, 135:3613-3632. doi:  10.1175/MWR3446.1
    [16]
    Krishnamurti T N, Mishra A K, Chakraborty A, et al.Improving global model precipitation forecasts over India using downscaling and the FSU superensemble.Part Ⅰ:1-5-Day Forecasts.Mon Wea Rev, 2009, 137:2713-2735. doi:  10.1175/2009MWR2568.1
    [17]
    Krishnamurti T N, Sagadevan A D, Chakraborty A, et al.Improving multimodel weather forecast of monsoon rain over China using FSU superensemble.Adv Atmos Sci, 2009, 26(5):813-839. doi:  10.1007/s00376-009-8162-z
    [18]
    智协飞, 季晓东, 张璟, 等.基于TIGGE资料的地面气温和降水的多模式集成预报.大气科学学报, 2013, 36(3):257-266. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201303003.htm
    [19]
    赵声蓉.多模式温度集成预报.应用气象学报, 2006, 17(1):52-58. doi:  10.11898/1001-7313.20060109
    [20]
    Krishnamurti T N, Sajani S, Shin D W, et al.Real-time multianalysis-multimodel superensemble forecasts of precipitation using TRMM and SSM/I products.Mon Wea Rev, 2001, 129:2861-2883. doi:  10.1175/1520-0493(2001)129<2861:RTMMSF>2.0.CO;2
    [21]
    王雨, 闫之辉.降水检验方案变化对降水检验评估效果的影响分析.气象, 2007, 33(12):53-61. doi:  10.7519/j.issn.1000-0526.2007.12.008
    [22]
    Emad H, Witold F K, Grzegorz J C.Estimation of rainfall interstation correlation.J Hydrometeorology, 2001, 2(6):621-629. doi:  10.1175/1525-7541(2001)002<0621:EORIC>2.0.CO;2
    [23]
    肖红茹, 王灿伟, 周秋雪, 等.T639、ECMWF细网格模式对2012年5~8月四川盆地降水预报的天气学检验.高原山地气象研究, 2013, 33(1):80-85. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201301015.htm
    [24]
    陶诗言.中国之暴雨.北京:科学出版社, 1980.
    [25]
    赵平, 周秀骥.近40年我国东部降水持续时间和雨带移动的年代及变化.应用气象学报, 2006, 17(5):548-556. doi:  10.11898/1001-7313.20060512
    [26]
    缪锦海, Lau K M.东亚季风降水的年际变化.应用气象学报, 1990, 1(4):377-382. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19900456&flag=1
    [27]
    缪锦海, Lau K M.东亚夏季风降水中的30-60天低频振荡.大气科学, 1991, 15(5):65-71. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199105007.htm
    [28]
    魏凤英.全球海表温度变化与中国夏季降水异常分布.应用气象学报, 1998, 9(增刊Ⅰ):100-108. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.012.htm
    [29]
    宋文玲.热带西太平洋对流活动与中国夏季降水.应用气象学报, 2005, 16(增刊Ⅰ):63-69. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2005S1007.htm
    [30]
    蔡学湛, 吴滨.青藏高原雪盖异常的环流特征及其与我国夏季降水的关系.应用气象学报, 2005, 16(1):89-95. doi:  10.11898/1001-7313.20050112
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (4699) PDF downloads(1554) Cited by()
    • Received : 2014-11-07
    • Accepted : 2015-01-09
    • Published : 2015-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint