Tan Yongbo, Zhang Dongdong, Zhou Bowen, et al. A numerical study on characteristics of cloud-to-ground lightning near surface configuration. J Appl Meteor Sci, 2015, 26(2): 211-220. DOI:  10.11898/1001-7313.20150209.
Citation: Tan Yongbo, Zhang Dongdong, Zhou Bowen, et al. A numerical study on characteristics of cloud-to-ground lightning near surface configuration. J Appl Meteor Sci, 2015, 26(2): 211-220. DOI:  10.11898/1001-7313.20150209.

A Numerical Study on Characteristics of Cloud-to-ground Lightning Near Surface Configuration

DOI: 10.11898/1001-7313.20150209
  • Received Date: 2014-09-11
  • Rev Recd Date: 2014-12-31
  • Publish Date: 2015-03-31
  • As a common phenomenon in nature, lightning can influence living environment and production extremely. With continuous field lightning observation tests and model experiments, the understanding of lightning process is making a great progress, especially for cloud-to-ground (CG) lightning progression process. The spatial propagation of lightning shows characteristics of randomness, which make lightning unpredictable and lightning protection difficult.The influence of different lightning spatial configurations on CG lightning process is studied, including the location of stroke points, the length of upward leader, the tip location of downward leader when upward leader trigger, form of lightning attachment process. Based on existing model, a region near to the ground is highlighted and the spatial resolution is improved. A 2-dimension model of CG lightning progress process is developed to simulate different lightning spatial configurations by changing random parameters via using the finite difference method. It shows that the difference of lightning spatial configurations will make the location of stroke points different, and random lightning spatial configurations make the length of upward leader random. The range of length of upward leader is 77 m to 609 m, and it concentrates on 100 m to 200 m. Besides, statistical results show that the length of upward leader triggered from building is longer than that triggered from the ground. It also makes the tip location of downward leader when upward leader trigger distribution regularly. The tip location presents ellipsoidal distribution over the building. Also, different lightning spatial configurations will affect the form of CG lightning attachment process. Simulation results emerge three lightning attachment process forms and all can be verified by field lightning observations. All these outcomes show that lightning spatial configuration plays an important role in affecting CG lightning process.In addition, according to a series of statistical analysis, it shows that the length of downward leader and the length of upward leader near the ground have certain linear correlation. The other factors of lightning have little correlations, such as the length of downward leader near the ground and striking distance, the length of upward leader and lightning horizontal extent.
  • Fig. 1  Model of leader progression

    Fig. 2  Diagram of simulation region

    Fig. 3  Lightning progression forms

    (a) random parameter is 13, (b) random parameter is 181, (c) random parameter is 182

    Fig. 4  Statistical results of location of stroke points

    Fig. 5  Statistical results of upward leader length

    Fig. 6  Statistical results of the tip location of downward leader when upward leader trigger

    Fig. 7  Forms of lightning attachment process

    (a) random parameter is 5, (b) random parameter is 31, (c) random parameter is 37, (d) random parameter is 7

    Fig. 8  Fitting between length of downward leader and striking distance

    Fig. 9  Fitting between length of downward leader and length of upward leader

  • [1]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
    [2]
    马明, 吕伟涛, 张义军, 等.1997—2006年我国雷电灾情特征.应用气象学报, 2008, 19(4):393-400. doi:  10.11898/1001-7313.20080402
    [3]
    Mansell E R, MacGorman D R, Ziegler C L, et al.Simulated three-dimensional branched lightning in a numerical thunderstorm model.Journal of Geophysical Research:Atmospheres (1984-2012), 2002, 107(D9):ACL 2-1-ACL 2-12. doi:  10.1029/2000JD000244/full
    [4]
    Hartono Z, Robiah I, Darveniza M.A Database of Lightning Damage Caused by Bypasses of Air Terminals on Buildings in Kuala Lumpur, Malaysia.VI International Symposium on Lightning Protection.Santos, Brazil, 2001:211-216. https://www.researchgate.net/profile/Zainalabidin_Hartono/publication/45491914_A_database_of_lightning_damage_caused_by_bypasses_of_air_terminals_on_buildings_in_Kuala_Lumpur_Malaysia/links/5488374f0cf268d28f07f912.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
    [5]
    Hartono Z, Robiah I.A Method of Ldentifying the Lightning Strike Location on a Structure.International Conference on Electromagnetic Compatibility.Kuala Lumpur, Malaysia, 1995:112-117.
    [6]
    Hartono Z, Robiah I.The Collection Surface Concept as a Reliable Method for Predicting the Lightning Strike Location.25th International Conference on Lightning Protection.Rhodes, Greece, 2000:328-333. https://www.researchgate.net/publication/283692564_The_collection_surface_concept_as_a_reliable_method_for_predicting_the_lightning_strike_location
    [7]
    Lu W T, Zhang Y, Chen L W, et al.Attachment Processes of Two Natural Downward Lightning Flashes Striking on High Structures.30th International Conference on Lightning Protection, 2010. https://www.researchgate.net/publication/282353256_Lightning_Attachment_Processes_of_Three_Natural_Lightning_Discharges
    [8]
    Lu W T, Chen L W, Ma Y, et al.Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader.Geophys Res Lett, 2013, 40(20):5531-5535. doi:  10.1002/2013GL058060
    [9]
    Warner T A.Upward Leader Development from Tall Towers in Response to Downward Stepped Leaders.30th International Conference on Lightning Protection, 2010. https://www.researchgate.net/publication/261357154_Upward_leader_development_from_tall_towers_in_response_to_downward_stepped_leaders
    [10]
    Horvath T.Computation of Lightning Protection.London:Research Studies Press, 1991:243-261.
    [11]
    Uman M A, Rakov V A.A Critical Review of Nonconventional Approaches to Lightning Protection.American Meteorological Society, 2002:1809-1820. https://www.researchgate.net/publication/3171104_Lightning_protection_methods_An_update_and_a_discredited_system_vindicated
    [12]
    Xu Yazhong, Chen Mingli.An Improved 3-D Self-consistent Stochastic Stepped Leader Model.International Conference on Lightning Protection, 2012:1-5. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000006110217
    [13]
    Vargas M, Torres H. On the development of a lightning leader model for tortuous or branched channels-PartⅠ:Model description.Journal of Electrostatics, 2008, 66:482-488. doi:  10.1016/j.elstat.2008.04.012
    [14]
    Vargas Mauricio.Novel Integral Model of the Lightning Discharge Channel and Its Attachment to Grounded Structures.Faculty of Engineering, National University of Colombia, 2006.
    [15]
    任晓毓, 张义军, 吕伟涛, 等, 闪电先导随机模式的建立与应用.应用气象学报, 2011, 22(2):194-202. doi:  10.11898/1001-7313.20110208
    [16]
    任晓毓, 张义军, 吕伟涛, 等.雷击建筑物的先导连接过程模拟.应用气象学报, 2010, 21(4):450-457. doi:  10.11898/1001-7313.20100408
    [17]
    李丹, 张义军, 吕伟涛.风力发电机叶片姿态与雷击概率关系模拟分析.应用气象学报, 2013, 24(5):585-594. doi:  10.11898/1001-7313.20130508
    [18]
    李丹. 闪电先导三维自持发展模式及应用. 北京: 中国气象科学研究院, 2013.
    [19]
    Les Renardieres Group.Positive discharges in long air gaps at Les Renardieres-1975 results and conclusions.Electra, 1977, 53:31-153. http://industry.wanfangdata.com.cn/dl/Detail/ExternalResource?id=gdyjs201103003%5e3
    [20]
    Les Renardieres Group.Negative discharges in long air gaps at Les Renardieres-1978 results.Electra, 1981, 74:67-216. http://iopscience.iop.org/book/978-0-7503-1236-3/chapter/bk978-0-7503-1236-3ch4
    [21]
    Dellera L, Garbagnati E.Lightning stroke simulation by means of the leader progression model.I.Description of the model and evaluation of exposure of free-standing structures.IEEE Trans Power Delivery, 1990, 5(4):2009-2022. doi:  10.1109/61.103696
    [22]
    Rizk F A M.Modeling of lightning incidence to tall structures.IEEE Trans Power Delivery, 1994, 9(1):172-193. doi:  10.1109/61.277690
    [23]
    Marley B, Vernon C.A simplified physical model to determine the lightning upward connecting leader inception.IEEE Transactions on Power Delivery, 2006, 21(2):897-908. doi:  10.1109/TPWRD.2005.859290
    [24]
    谭涌波, 师正, 王宁宁, 等.随机性与电环境特征对地闪击地点影响的数值模拟.地球物理学报, 2012, 55(11):3534-3541. doi:  10.6038/j.issn.0001-5733.2012.11.003
    [25]
    Tan Y B, Tao S C.Fine-resolution simulation of the channel structures and propagation features of intracloud lightning.Geophys Res Lett, 2006, 33(1):L09809. doi:  10.1029/2005GL025523/full
    [26]
    谭涌波, 陶善昌, 祝宝友, 等.雷暴云内闪电双层、分枝结构的数值模拟.中国科学D辑:地球科学, 2006, 36(5):486-496. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200605010.htm
    [27]
    Eriksson A.The Lightning Ground Flash-An Engineering Study.Faculty of Engineering, University of Natal, Pretoria, South Africa, 1979.
    [28]
    郭秀峰, 谭涌波, 郭凤霞, 等.建筑物尖端对大气电场畸变影响的数值计算.应用气象学报, 2013, 24(2):189-196. doi:  10.11898/1001-7313.20130207
    [29]
    谭涌波, 张冬冬, 郭秀峰, 等.轴对称建筑物形状对电场畸变影响的数值模拟.电波科学学报, 2013, doi: 10.13443/j.cjors.2013110701.
    [30]
    高彦. 闪电连接过程中先导三维发展特征的分析. 北京: 中国气象科学研究院, 2014.
    [31]
    Idone V P.Length bounds for connecting discharges in triggered lightning.J Geophys Res, 1990, 95:20409-20416. doi:  10.1029/JD095iD12p20409
    [32]
    Orville R E, Idone V P.Lightning leader characteristics in the thunderstorm research international program.J Geophys Res, 1982, 87:11177-11192. doi:  10.1029/JC087iC13p11177
    [33]
    Lu W T, Chen L W, Zhang Y, et al.Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou.J Geophys Res, 2012, 117, D19211. https://www.researchgate.net/profile/Weitao_Lu2/publication/258662982_Characteristics_of_unconnected_upward_leaders_initiated_from_tall_structures_observed_in_Guangzhou/links/53eef3780cf23733e812c297.pdf
    [34]
    Yokoyama S, Miyake K, Suzuki T, et al.Winter lightning on Japan Sea coast-development of measuring system on progressing feature of lightning discharge.IEEE Transactions on Power Delivery, 1990, 5:1418-1425. doi:  10.1109/61.57984
    [35]
    张义军, 吕伟涛, 郑栋, 等.负地闪先导-回击过程的光学观测和分析.高电压技术, 2008, 34(10):2022-2029. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200810002.htm
    [36]
    Petrov N I, Waters R T.Determination of the striking distance of lightning to earthed structures.Mathematical and Physical Sciences, 1995, 450:589-601. doi:  10.1098/rspa.1995.0102
    [37]
    Christian B. 丁海芳, 译. 雷电现象与防护. 中国雷电与防护, 2004(1): 1-9.
  • 加载中
  • -->

Catalog

    Figures(9)

    Article views (2871) PDF downloads(1030) Cited by()
    • Received : 2014-09-11
    • Accepted : 2014-12-31
    • Published : 2015-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint