云状 | GPSR算法 | OMP算法 | |||
残差法 | 稀疏比例法 | 残差法 | 稀疏比例法 | ||
波状云 | 62 | 54 | 60 | 52 | |
层状云 | 92 | 94 | 92 | 92 | |
积状云 | 56 | 86 | 44 | 60 | |
卷云 | 50 | 46 | 74 | 88 | |
晴空 | 94 | 96 | 92 | 96 |
Citation: | Han Wenyu, Liu Lei, Gao Taichang, et al. Classification of whole sky infrared cloud image using compressive sensing. J Appl Meteor Sci, 2015, 26(2): 231-239. DOI: 10.11898/1001-7313.20150211. |
Table 1 Recognition rate by residual and sparse-proportion methods (unit:%)
云状 | GPSR算法 | OMP算法 | |||
残差法 | 稀疏比例法 | 残差法 | 稀疏比例法 | ||
波状云 | 62 | 54 | 60 | 52 | |
层状云 | 92 | 94 | 92 | 92 | |
积状云 | 56 | 86 | 44 | 60 | |
卷云 | 50 | 46 | 74 | 88 | |
晴空 | 94 | 96 | 92 | 96 |
Table 2 Classification of confusion matrix by GPSR and residual methods
自动分类 | 人工分类 | ||||
波状云 | 层状云 | 积状云 | 卷云 | 晴空 | |
波状云 | 31 | 9 | 2 | 7 | 1 |
层状云 | 1 | 46 | 0 | 2 | 1 |
积状云 | 2 | 11 | 28 | 6 | 3 |
卷云 | 4 | 9 | 2 | 25 | 10 |
晴空 | 0 | 0 | 0 | 3 | 46 |
Table 3 Classification of confusion matrix by GPSR and sparse-proportion methods
自动分类 | 人工分类 | ||||
波状云 | 层状云 | 积状云 | 卷云 | 晴空 | |
波状云 | 27 | 0 | 18 | 5 | 0 |
层状云 | 0 | 47 | 1 | 2 | 0 |
积状云 | 2 | 2 | 43 | 3 | 0 |
卷云 | 4 | 2 | 16 | 23 | 5 |
晴空 | 0 | 0 | 1 | 1 | 48 |
Table 4 Recognition rate by residual with sparse-proportion method (unit:%)
云状 | GPSR算法 | OMP算法 | 平均识别率 |
波状云 | 74 | 76 | 75 |
层状云 | 90 | 92 | 91 |
积状云 | 66 | 74 | 70 |
卷云 | 80 | 90 | 85 |
晴空 | 94 | 92 | 93 |
[1] |
刘瑞霞, 刘玉浩.中国云气候特征的分析.应用气象学报, 2004, 15(4):465-474. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040456&flag=1
|
[2] |
林晔.大气探测学教程.北京:气象出版社, 1993:20-21.
|
[3] |
陆雅君, 陈刚毅, 龚克坚, 等.测云方法研究进展.气象科技, 2012, 40(5):689-697. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201205001.htm
|
[4] |
高太长, 刘磊, 赵世军, 等.全天空测云技术现状及进展.应用气象学报, 2010, 21(1):101-109. doi: 10.11898/1001-7313.20100114
|
[5] |
孙学金, 高太长, 翟东力, 等.基于非制冷红外焦平面阵列的全天空红外测云系统.红外与激光工程, 2008, 37(5):761-764. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200805006.htm
|
[6] |
Genkova I, Long C N, Besnard T, et al.Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer.Fourteenth ARM Science Team Meeting Proceedings, 2004.
|
[7] |
Shaw J A, Nugent P, Pust N J, et al.Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera.Optics Express, 2005, 13(15):5807-5817. doi: 10.1364/OPEX.13.005807
|
[8] |
孙学金, 刘剑, 毛节泰.全天空红外测云系统辐射传感器的替代定标.红外与毫米波学报, 2009, 28(1):53-57. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200901013.htm
|
[9] |
Allmen M C, Kegelmeyer W P.The computation of cloud-base height from paired whole-sky imaging cameras.Atmos Oceanic Technol, 1996, 13:97-113. doi: 10.1175/1520-0426(1996)013<0097:TCOCBH>2.0.CO;2
|
[10] |
Seiz G, Baltsavias E P, Gruen A.Cloud mapping from the ground:Use of photogrammetric methods.Photogramm Engineering Remote Sensing, 2002, 68:941-951. http://www.academia.edu/12775164/Cloud_Mapping_from_the_Ground_Use_of_Photogrammetric_Methods
|
[11] |
Kassianov E, Long C N, Christy J.Cloud-base-height estimation from paired ground-based hemispherical observations.J Appl Meteor, 2005, 44:1221-1233. doi: 10.1175/JAM2277.1
|
[12] |
胡树贞, 马舒庆, 陶法, 等.地基双波段测云系统及其对比试验.应用气象学报, 2012, 23(4):441-450. doi: 10.11898/1001-7313.20120407
|
[13] |
Calbó J, Sabburg J.Feature extraction from whole-sky gro-und-based images for cloud-type recognition.J Atmos Oceanic Technol, 2008, 25:3-14. doi: 10.1175/2007JTECHA959.1
|
[14] |
Heinle A, Macke A, Srivastav A.Automatic cloud classification of whole sky images.Atmospheric Measurement Technique, 2010, 3:557-567. doi: 10.5194/amt-3-557-2010
|
[15] |
师春香, 吴蓉璋, 项续康.多阈值和神经网络卫星云图云系自动分割试验.应用气象学报, 2001, 12(1):70-78. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010108&flag=1
|
[16] |
Liu L, Sun X J, Chen F, et al.Cloud classification based on structure features of infrared images.J Atmos Oceanic Technol, 2011, 28:410-417. doi: 10.1175/2010JTECHA1385.1
|
[17] |
Singh M, Glennen M.Automated ground-based cloud recognition.Pattern Anal Appl, 2005, 8:258-271. doi: 10.1007/s10044-005-0007-5
|
[18] |
Sonka M, Hlavac V, Boyle R.Image Processing, Analysis and Machine Vision (Second Edition).北京:人民邮电出版社, 2002.
|
[19] |
Buch K A, Jr Sun C H.Cloud Classifation Using Whole-Sky Imager Data//Proceedings of the Ninth Symposium on Meteorological Observations and Instrumentation.Charlotte, North Carolina, 1995:353-358.
|
[20] |
Singh M, Glennen M.Automated ground-based cloud recognition.Pattern Anal Applic, 2005, 8:258-271. doi: 10.1007/s10044-005-0007-5
|
[21] |
Augusteijn M F.Performance evaluation of texture measures for ground cover identification in satellite images by means of a neural-network classifier.IEEE Trans Geo Ssci Remote Sensing, 1995, 33(3):616-626. doi: 10.1109/36.387577
|
[22] |
Lohmann G.Co-Occurrence-Based Analysis and Synthesis of Textures, Pattern Recognition.Conference A:Computer Vision & Image Processing, Proceedings of the 12th IAPR International Conference on Volume:1.1994:449-453. http://ieeexplore.ieee.org/document/576322/
|
[23] |
Haralick R M, Dinstein I, Shanmugam K.Textural features for image classification.IEEE Trans Syst Man Cybern, 1973, 3:610-621. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4309314
|
[24] |
Welch R M, Kuo K S, Sengupta S K.et al.Cloud field classification based upon high spatial resolution textural feature (Ⅰ):Gray-level cooccurrence matrixa approach.J Geophys Res, 1988, 93:12663-12681. doi: 10.1029/JD093iD10p12663
|
[25] |
Kuo K S, Welch R M, Sengupta S K.Structural and textural characteristics of cirrus clouds observed using high spatial resolution landsat imagery.J Appl Meteorol, 1988, 27(11):1242-1260. doi: 10.1175/1520-0450(1988)027<1242:SATCOC>2.0.CO;2
|
[26] |
孙学金, 刘磊, 高太长, 等.基于LBP算法的全天空红外云图的分类研究.大气科学学报, 2009, 32(4):490-497. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200904005.htm
|
[27] |
孙学金, 陈峰, 刘磊, 等.阈值与纹理相结合的云识别方法.解放军理工大学学报:自然科学版, 2011, 12(4):397-402. http://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201104018.htm
|
[28] |
孙学金, 刘磊, 高太长, 等.基于模糊纹理光谱的全天空红外图像云分类.应用气象学报, 2009, 20(2):157-163. doi: 10.11898/1001-7313.20090204
|
[29] |
朱彪, 杨俊, 吕伟涛, 等.基于KNN的地基可见光云图分类方法.应用气象学报, 2012, 23(6):721-728. doi: 10.11898/1001-7313.20120609
|
[30] |
皱伟, 李元祥, 杨俊杰, 等.基于压缩感知的人脸识别方法.计算机工程, 2012, 38(24):133-136. http://cdmd.cnki.com.cn/Article/CDMD-10056-1015018054.htm
|
[31] |
Wright J, Yang Y, Ganesh A, et a1.Robust face recognition via sparse representation.Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227. doi: 10.1109/TPAMI.2008.79
|
[32] |
蔡将飞, 张明, 朱俊平.基于压缩感知理论的杂草种子分类识别.中国科学:信息科学, 2010, 40(增刊Ⅰ):160-172. http://cdmd.cnki.com.cn/Article/CDMD-10712-1012436728.htm
|
[33] |
Candes E J, Romberg J.Quantitative robust uncertainty principles and optimally sparse decompositions.Found Computer Math, 2006, 6:227-254. doi: 10.1007/s10208-004-0162-x
|
[34] |
Candes E J.Compressive Sampling//Leon M, Andratas C, Casacuberta C, et al.Proceedings of The International Congress of Mathematicians.Madrid:European Mathematical Society Publishing House, 2006:1433-1452.
|
[35] |
Candes E J, Romberg J, Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Trans Inform Theory, 2006, 52:489-509. doi: 10.1109/TIT.2005.862083
|
[36] |
Tibshirani R.Regression shrinkage and selection via the LASSO.J Roy Stat Soc B, 1996, 58:267-288. http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7574
|
[37] |
Figueiredo M A T, Nowak R D, Wright S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems.IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):586-597. doi: 10.1109/JSTSP.2007.910281
|
[38] |
Tropp J A.Greed is good:Algorithmic results for sparse approximation.IEEE Trans On Information Theory, 2004, 50(10):2231-2242. doi: 10.1109/TIT.2004.834793
|
[39] |
殷爱菡, 姜辉明, 张清淼.改进OMP算法在人脸识别中的应用.计算机工程, 2012, 38(12):146-148. doi: 10.3969/j.issn.1000-3428.2012.12.043
|