Han Wenyu, Liu Lei, Gao Taichang, et al. Classification of whole sky infrared cloud image using compressive sensing. J Appl Meteor Sci, 2015, 26(2): 231-239. DOI:  10.11898/1001-7313.20150211.
Citation: Han Wenyu, Liu Lei, Gao Taichang, et al. Classification of whole sky infrared cloud image using compressive sensing. J Appl Meteor Sci, 2015, 26(2): 231-239. DOI:  10.11898/1001-7313.20150211.

Classification of Whole Sky Infrared Cloud Image Using Compressive Sensing

DOI: 10.11898/1001-7313.20150211
  • Received Date: 2014-05-16
  • Rev Recd Date: 2014-11-18
  • Publish Date: 2015-03-31
  • Cloud type, as an important macroeconomic parameter in cloud detection, plays a mean role in weather forecasting, field meteorological service, aerospace and climate researches. Automatic identification of cloud types is not efficiently resolved. Cloud shapes, texture, color, contour, range, process of change and some other features are used for manual cloud classification, but it is hard to find a nice way to extract effective features for automatic identification. Particularly, infrared images provide less resolution and less color information.A new method is proposed to classify cloud images obtained from the whole sky infrared cloud measuring system (WSIRCMS) from compressive sensing (CS). Firstly, a redundant dictionary is constructed with typical cloud samples. In order to reduce the computational complexity and computing time, principal component analysis (PCA) and down-sampling is applied to dimension reduction in building up redundant dictionary. It's found that classification results tend to be stable and suitable when the feature contribution rate is more than 95% in PCA or at 16-time down-sampling. Secondly, the optimal solution of paradigm is solved using gradient projection for sparse reconstruction (GPSR) and orthogonal matching pursuit (OMP) algorithms. Sparse algorithm has a certain influence on classification results. There are some negative sparse solutions in GPSR and OMP algorithms, and through the analysis, when the proportion of negative sparse solution is more than 46%, the classification of residual method is prone to error. Sparse solution may be wrong if the incoherence of different type cannot be guaranteed in establishing redundant dictionary, and the dimension reduction may especially increase the correlation. If the cloud texture, structure feature can be kept in process of dimension reduction and one-dimensional treatment and establishing redundant dictionary is complete, it probably makes better sparse solution. Finally, the residual method and sparse proportion method are used to discriminate cloud types. According to experimental results, it's found that the spare-proportion of wave cloud misclassified as cumuliform is less than cumuliform, and for the wave cloud misclassified as stratus cloud or cirrus, its spare-proportion of stratus and cirrus type is small. By combining two discriminated methods, two greatest sparse proportion types are selected and then the small residual is analyzed. Classification accuracy of wave, cumuliform, cirrus cloud is improved.Using compress sensing theory in cloud classification avoids the feature extraction process, and provides a new way for the automatic identification of infrared cloud images. With this method, the recognition rate of waveform, stratiform, cumuliform, cirrus and clear sky reaches 75%, 91%, 70%, 85% and 93%, respectively, with the average accuracy up to 82.8%.
  • Fig. 1  Sample of cloud images

    (a) waveform cloud, (b) stratiform cloud, (c) cumuliform cloud, (d) cirrus, (e) clear sky

    Fig. 2  The process of cloud classification based on sparse representation

    Fig. 3  Overall recognition rate by PCA

    Fig. 4  Sparse solution distribution of different cloud classification

    Fig. 5  Residual and sparse-proportion of wave cloud

    Table  1  Recognition rate by residual and sparse-proportion methods (unit:%)

    云状 GPSR算法 OMP算法
    残差法 稀疏比例法 残差法 稀疏比例法
    波状云 62 54 60 52
    层状云 92 94 92 92
    积状云 56 86 44 60
    卷云 50 46 74 88
    晴空 94 96 92 96
    DownLoad: Download CSV

    Table  2  Classification of confusion matrix by GPSR and residual methods

    自动分类 人工分类
    波状云 层状云 积状云 卷云 晴空
    波状云 31 9 2 7 1
    层状云 1 46 0 2 1
    积状云 2 11 28 6 3
    卷云 4 9 2 25 10
    晴空 0 0 0 3 46
    DownLoad: Download CSV

    Table  3  Classification of confusion matrix by GPSR and sparse-proportion methods

    自动分类 人工分类
    波状云 层状云 积状云 卷云 晴空
    波状云 27 0 18 5 0
    层状云 0 47 1 2 0
    积状云 2 2 43 3 0
    卷云 4 2 16 23 5
    晴空 0 0 1 1 48
    DownLoad: Download CSV

    Table  4  Recognition rate by residual with sparse-proportion method (unit:%)

    云状 GPSR算法 OMP算法 平均识别率
    波状云 74 76 75
    层状云 90 92 91
    积状云 66 74 70
    卷云 80 90 85
    晴空 94 92 93
    DownLoad: Download CSV
  • [1]
    刘瑞霞, 刘玉浩.中国云气候特征的分析.应用气象学报, 2004, 15(4):465-474. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040456&flag=1
    [2]
    林晔.大气探测学教程.北京:气象出版社, 1993:20-21.
    [3]
    陆雅君, 陈刚毅, 龚克坚, 等.测云方法研究进展.气象科技, 2012, 40(5):689-697. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201205001.htm
    [4]
    高太长, 刘磊, 赵世军, 等.全天空测云技术现状及进展.应用气象学报, 2010, 21(1):101-109. doi:  10.11898/1001-7313.20100114
    [5]
    孙学金, 高太长, 翟东力, 等.基于非制冷红外焦平面阵列的全天空红外测云系统.红外与激光工程, 2008, 37(5):761-764. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200805006.htm
    [6]
    Genkova I, Long C N, Besnard T, et al.Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer.Fourteenth ARM Science Team Meeting Proceedings, 2004.
    [7]
    Shaw J A, Nugent P, Pust N J, et al.Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera.Optics Express, 2005, 13(15):5807-5817. doi:  10.1364/OPEX.13.005807
    [8]
    孙学金, 刘剑, 毛节泰.全天空红外测云系统辐射传感器的替代定标.红外与毫米波学报, 2009, 28(1):53-57. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200901013.htm
    [9]
    Allmen M C, Kegelmeyer W P.The computation of cloud-base height from paired whole-sky imaging cameras.Atmos Oceanic Technol, 1996, 13:97-113. doi:  10.1175/1520-0426(1996)013<0097:TCOCBH>2.0.CO;2
    [10]
    Seiz G, Baltsavias E P, Gruen A.Cloud mapping from the ground:Use of photogrammetric methods.Photogramm Engineering Remote Sensing, 2002, 68:941-951. http://www.academia.edu/12775164/Cloud_Mapping_from_the_Ground_Use_of_Photogrammetric_Methods
    [11]
    Kassianov E, Long C N, Christy J.Cloud-base-height estimation from paired ground-based hemispherical observations.J Appl Meteor, 2005, 44:1221-1233. doi:  10.1175/JAM2277.1
    [12]
    胡树贞, 马舒庆, 陶法, 等.地基双波段测云系统及其对比试验.应用气象学报, 2012, 23(4):441-450. doi:  10.11898/1001-7313.20120407
    [13]
    Calbó J, Sabburg J.Feature extraction from whole-sky gro-und-based images for cloud-type recognition.J Atmos Oceanic Technol, 2008, 25:3-14. doi:  10.1175/2007JTECHA959.1
    [14]
    Heinle A, Macke A, Srivastav A.Automatic cloud classification of whole sky images.Atmospheric Measurement Technique, 2010, 3:557-567. doi:  10.5194/amt-3-557-2010
    [15]
    师春香, 吴蓉璋, 项续康.多阈值和神经网络卫星云图云系自动分割试验.应用气象学报, 2001, 12(1):70-78. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010108&flag=1
    [16]
    Liu L, Sun X J, Chen F, et al.Cloud classification based on structure features of infrared images.J Atmos Oceanic Technol, 2011, 28:410-417. doi:  10.1175/2010JTECHA1385.1
    [17]
    Singh M, Glennen M.Automated ground-based cloud recognition.Pattern Anal Appl, 2005, 8:258-271. doi:  10.1007/s10044-005-0007-5
    [18]
    Sonka M, Hlavac V, Boyle R.Image Processing, Analysis and Machine Vision (Second Edition).北京:人民邮电出版社, 2002.
    [19]
    Buch K A, Jr Sun C H.Cloud Classifation Using Whole-Sky Imager Data//Proceedings of the Ninth Symposium on Meteorological Observations and Instrumentation.Charlotte, North Carolina, 1995:353-358.
    [20]
    Singh M, Glennen M.Automated ground-based cloud recognition.Pattern Anal Applic, 2005, 8:258-271. doi:  10.1007/s10044-005-0007-5
    [21]
    Augusteijn M F.Performance evaluation of texture measures for ground cover identification in satellite images by means of a neural-network classifier.IEEE Trans Geo Ssci Remote Sensing, 1995, 33(3):616-626. doi:  10.1109/36.387577
    [22]
    Lohmann G.Co-Occurrence-Based Analysis and Synthesis of Textures, Pattern Recognition.Conference A:Computer Vision & Image Processing, Proceedings of the 12th IAPR International Conference on Volume:1.1994:449-453. http://ieeexplore.ieee.org/document/576322/
    [23]
    Haralick R M, Dinstein I, Shanmugam K.Textural features for image classification.IEEE Trans Syst Man Cybern, 1973, 3:610-621. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4309314
    [24]
    Welch R M, Kuo K S, Sengupta S K.et al.Cloud field classification based upon high spatial resolution textural feature (Ⅰ):Gray-level cooccurrence matrixa approach.J Geophys Res, 1988, 93:12663-12681. doi:  10.1029/JD093iD10p12663
    [25]
    Kuo K S, Welch R M, Sengupta S K.Structural and textural characteristics of cirrus clouds observed using high spatial resolution landsat imagery.J Appl Meteorol, 1988, 27(11):1242-1260. doi:  10.1175/1520-0450(1988)027<1242:SATCOC>2.0.CO;2
    [26]
    孙学金, 刘磊, 高太长, 等.基于LBP算法的全天空红外云图的分类研究.大气科学学报, 2009, 32(4):490-497. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200904005.htm
    [27]
    孙学金, 陈峰, 刘磊, 等.阈值与纹理相结合的云识别方法.解放军理工大学学报:自然科学版, 2011, 12(4):397-402. http://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201104018.htm
    [28]
    孙学金, 刘磊, 高太长, 等.基于模糊纹理光谱的全天空红外图像云分类.应用气象学报, 2009, 20(2):157-163. doi:  10.11898/1001-7313.20090204
    [29]
    朱彪, 杨俊, 吕伟涛, 等.基于KNN的地基可见光云图分类方法.应用气象学报, 2012, 23(6):721-728. doi:  10.11898/1001-7313.20120609
    [30]
    皱伟, 李元祥, 杨俊杰, 等.基于压缩感知的人脸识别方法.计算机工程, 2012, 38(24):133-136. http://cdmd.cnki.com.cn/Article/CDMD-10056-1015018054.htm
    [31]
    Wright J, Yang Y, Ganesh A, et a1.Robust face recognition via sparse representation.Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227. doi:  10.1109/TPAMI.2008.79
    [32]
    蔡将飞, 张明, 朱俊平.基于压缩感知理论的杂草种子分类识别.中国科学:信息科学, 2010, 40(增刊Ⅰ):160-172. http://cdmd.cnki.com.cn/Article/CDMD-10712-1012436728.htm
    [33]
    Candes E J, Romberg J.Quantitative robust uncertainty principles and optimally sparse decompositions.Found Computer Math, 2006, 6:227-254. doi:  10.1007/s10208-004-0162-x
    [34]
    Candes E J.Compressive Sampling//Leon M, Andratas C, Casacuberta C, et al.Proceedings of The International Congress of Mathematicians.Madrid:European Mathematical Society Publishing House, 2006:1433-1452.
    [35]
    Candes E J, Romberg J, Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Trans Inform Theory, 2006, 52:489-509. doi:  10.1109/TIT.2005.862083
    [36]
    Tibshirani R.Regression shrinkage and selection via the LASSO.J Roy Stat Soc B, 1996, 58:267-288. http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7574
    [37]
    Figueiredo M A T, Nowak R D, Wright S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems.IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):586-597. doi:  10.1109/JSTSP.2007.910281
    [38]
    Tropp J A.Greed is good:Algorithmic results for sparse approximation.IEEE Trans On Information Theory, 2004, 50(10):2231-2242. doi:  10.1109/TIT.2004.834793
    [39]
    殷爱菡, 姜辉明, 张清淼.改进OMP算法在人脸识别中的应用.计算机工程, 2012, 38(12):146-148. doi:  10.3969/j.issn.1000-3428.2012.12.043
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(4)

    Article views (2983) PDF downloads(1002) Cited by()
    • Received : 2014-05-16
    • Accepted : 2014-11-18
    • Published : 2015-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint