Ruan Xin, Xiong Anyuan, Hu Kaixi, et al. Correcting geopotential height errors of some mandatory levels of Chinese historic radiosonde observations. J Appl Meteor Sci, 2015, 26(3): 257-267. DOI:  10.11898/1001-7313.20150301.
Citation: Ruan Xin, Xiong Anyuan, Hu Kaixi, et al. Correcting geopotential height errors of some mandatory levels of Chinese historic radiosonde observations. J Appl Meteor Sci, 2015, 26(3): 257-267. DOI:  10.11898/1001-7313.20150301.

Correcting Geopotential Height Errors of Some Mandatory Levels of Chinese Historic Radiosonde Observations

DOI: 10.11898/1001-7313.20150301
  • Received Date: 2014-09-10
  • Rev Recd Date: 2015-03-02
  • Publish Date: 2015-05-31
  • Radiosonde observations are crucial in weather forecast and upper-air climate research. Due to their high vertical resolution, they are also important for calibration and validation of satellite temperature and water vapor retrievals. Quality control of Chinese radiosonde observations of 1951-2012 is conducted with hydrostatic check, and the result reveals that ratios of erroneous geopotential height (GPH) of 900 hPa, 800 hPa, 80 hPa and 60 hPa before 1963 are 2%-11%, which are much higher than other levels. The ratios of erroneous GPH of 250 hPa and 70 hPa in mid of the 1970s of a few stations in Yunnan Province are also much higher than other levels. Changes with observation code and practice in Chinese radiosonde observations are thoroughly investigated. Then the possible cause of the phenomenon is analyzed and validated with observations.The height of each pressure level in sounding is calculated by accumulating the thickness of layers between each pressure levels below on the base of station elevation. And the thickness is determined by hydrostatic equation automatically nowadays, but due to the limitation of calculation capacity before the 1980s, they are available in ready-made GPH-table. However, 900 hPa, 800 hPa, 80 hPa and 60 hPa are not included in the GPH-table possibly because they are not directly used in weather charts then. So GPHs of levels in question are obtained through interpolation on time-GPH chart after GPH of other levels are available on the chart through looking up the GPH-table. This practice makes GPH of levels in question vulnerable to human mistakes, thus many records contain errors. The explanation to the cause of the problem is validated with observations.Furthermore, the method to correct the erroneous GPH record is proposed, which is to recalculate it based on hydrostatic equation with correct observations of other levels from the same sounding. The correcting method is validated since the originally correct GPH records are reproduced accurately. For 900 hPa and 800 hPa of Ganzhou Station, differences between reproduced GPHs and original ones are less than 5 gpm, and about 50% of reproduced GPHs are exactly the same as original ones. Differences for 250 hPa of Kunming Station are all less than 5 gpm either, but differences are slightly larger for 70 hPa, possibly because the layer between 70-100 hPa is as large as 2300 gpm approximately, and significant levels are not enough to reveal all the details of temperature profile. Besides, the correcting method is validated from another aspect, since after the erroneous GPH are corrected, the relevant hydrostatic residue series become consistent.
  • Fig. 1  Annual erroneous ratio of mandatory-level geopotential heights of Chinese radiosonde observations from 1951 to 2012

    Fig. 2  Erroneous ratio of each mandatory-level geopotential heights of Chinese radiosonde observations from 1951 to 2012

    Fig. 3  Standard deviation of hydrostatic residue of each mandatory level at Ganzhou Station of Jiangxi before and after Dec 1963

    Fig. 4  Standard deviation of hydrostatic residue of each mandatory level at Kunming Station of Yunnan before and after May 1977

    Fig. 5  Different range of hydrostatic residue for 900 hPa and 800 hPa at Ganzhou Station of Jiangxi before and after Dec 1963

    Fig. 6  Different range of hydrostatic residue for 250 hPa and 70 hPa at Kunming Station of Yunnan

    Fig. 7  Standard deviation of hydrostatic residue at Ganzhou Station of Jiangxi before and after Dec 1963

    Fig. 8  Standard deviation of hydrostatic residueat at Kunming Station of Yunnan before and after May 1977

    Fig. 9  Probability density distribution of difference between calculated and original geopotential heights at Ganzhou Station of Jiangxi

    Fig. 10  Probability density distribution of difference between calculated and original geopotential heights at Kunming Station of Yunnan

    Fig. 11  Hydrostatic residue of 900 hPa and 800 hPa at Ganzhou Station of Jiangxi (with corrected geopotential heights before Dce 1963)

    Fig. 12  Hydrostatic residue of 250 hPa and 70 hPa at Kunming Station of Yunnan (with corrected geopotential heights before May 1977)

  • [1]
    Office of the Federal Coordinator for Meteorological Service and Supporting Research.Federal Meteorological Handbook No.3, Rawinsonde and Pibal Observation. Washington D C, 1997.
    [2]
    祁秀香, 郑永光.2007年夏季我国深对流活动时空分布特征.应用气象学报, 2009, 20(3):286-294. doi:  10.11898/1001-7313.20090304
    [3]
    孙虎林, 罗亚丽, 张人禾.2009年6月3—4日黄淮地区强飑线天气过程成熟阶段特征分析.大气科学, 2011, 35(1):1-16. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201101010.htm
    [4]
    江吉喜, 项续康, 范梅珠.青藏高原夏季中尺度强对流系统的时空分布.应用气象学报, 1996, 7(4):473-478. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960472&flag=1
    [5]
    张腾飞, 鲁亚斌, 张杰, 等.2000年以来云南4次强降雪过程的对比分析.应用气象学报, 2007, 18(1):64-72. doi:  10.11898/1001-7313.20070112
    [6]
    王迎春, 钱婷婷, 郑永光.北京连续降雪过程分析.应用气象学报, 2004, 15(1):58-65. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040108&flag=1
    [7]
    叶晨, 王建捷, 张文龙.北京2009年"1101"暴雪的形成机制.应用气象学报, 2011, 22(4):398-409. doi:  10.11898/1001-7313.20110402
    [8]
    Marshall G J.Trends in Antarctic geopotential height and temperature:A comparison between radiosonde and NCEP-NCAR reanalysis data.J Climate, 2002, 15(6):659-673. doi:  10.1175/1520-0442(2002)015<0659:TIAGHA>2.0.CO;2
    [9]
    Durre I, Vose R S, Wuertz D B.Overview of the integrated global radiosonde archive.J Climate, 2006, 19(1):53-68. doi:  10.1175/JCLI3594.1
    [10]
    Klein W H, Dai Y.Reconstruction of monthly mean 700-mb height from surface data by reverse specification.J Climate, 1998, 11(8):2136-2146. doi:  10.1175/1520-0442-11.8.2136
    [11]
    Gong D Y, Drange H, Gao Y.Reconstruction of Northern Hemisphere 500 hPa geopotential heights back to the late 19th century.Theoretical and Applied Climatology, 2007, 90(1-2):83-102. doi:  10.1007/s00704-006-0271-3
    [12]
    Zhai P M, Eskridge R E.Analyses of inhomogeneities in radiosonde temperature and humidity time Series.J Climate, 1996, 9(4):884-894. doi:  10.1175/1520-0442(1996)009<0884:AOIIRT>2.0.CO;2
    [13]
    Guo Y J, Thorne P W, McCarthy M P, et al.Radiosonde temperature trends and their uncertainties over eastern China.Int J Climatol, 2008, 28:1269-1281. doi:  10.1002/joc.v28:10
    [14]
    Guo Y J, Ding Y H.Long-term free-atmosphere temperature trends in China derived from homogenized in situ radiosonde temperature series.J Climate, 2009, 22(4):1037-1051. doi:  10.1175/2008JCLI2480.1
    [15]
    Dai A, Wang J, Thorne P W, et al.A new approach to homogenize daily radiosonde humidity data.J Climate, 2011, 24(4):965-991. doi:  10.1175/2010JCLI3816.1
    [16]
    Zhao T, Dai A, Wang J.Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset.J Climate, 2012, 25(13):4549-4567. doi:  10.1175/JCLI-D-11-00557.1
    [17]
    马颖, 姚雯, 黄炳勋.59型和L波段探空仪温度和位势高度记录对比.应用气象学报, 2010, 21(2):214-220. doi:  10.11898/1001-7313.20100211
    [18]
    陶士伟, 张跃堂.全球观测资料质量监视评估.气象, 2006, 32(6):53-58. doi:  10.7519/j.issn.1000-0526.2006.06.009
    [19]
    翟盘茂.中国历史探空资料中的一些过失误差及偏差问题.气象学报, 1997, 55(5):563-572. doi:  10.11676/qxxb1997.055
    [20]
    Oakley T.Report by the Rapporteur on Radiosonde Compatibility Monitoring.WMO/TD-No.587, 1993.
    [21]
    Guo Y, Huang B, Hu D, et al.Correction for Bias of Chinese Upper-air Measurements.WMO Teco, 2002. http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-75-TECO2002/Papers/1.2(07)Guo.doc
    [22]
    陶士伟, 陈晓红, 龚建东.L波段探空仪温度资料误差分析.气象, 2006, 32(10):46-51. doi:  10.7519/j.issn.1000-0526.2006.10.007
    [23]
    Collins W G, Gandin L S.Comprehensive hydrostatic quality control at National Meteorological Center.Mon Wea Rev, 1990, 118(12):2752-2767. doi:  10.1175/1520-0493(1990)118<2752:CHQCAT>2.0.CO;2
    [24]
    Collins W G.The operational complex quality control of radiosonde height and temperatures at the national centers for environmental prediction.Part Ⅰ, description of the method.J Applied Meteor, 2001, 40(2):137-151. doi:  10.1175/1520-0450(2001)040<0137:TOCQCO>2.0.CO;2
    [25]
    Gandin L S.Complex quality control of meteorological observations.Mon Wea Rev, 1990, 116(5):1137-1155. doi:  10.1175/1520-0493%281988%29116<1137%3ACQCOMO>2.0.CO%3B2
    [26]
    翟盘茂, 周琴芳.高空资料质量控制的CHQC方法.气象科技, 1993, 11(3):92-97. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ199303012.htm
    [27]
    中央人民政府人民革命军事委员会气象局. 苏联预报工作规范 (第1部), 天气图和高空图的绘制. 1953.
    [28]
    中央气象局. 苏联部长会议水文气象总部水文气象站哨规范 (第四分册), 测站高空气象观测. 1956.
    [29]
    中央气象局. 苏式 (P3-049) 型探空观测规范. 1959.
    [30]
    中央气象局. 苏式 (P3-049) 型探空观测规范 (重印本). 1959.
    [31]
    中央气象局. 高空气象观测规范 (使用P3-049型探空仪). 1963.
    [32]
    中央气象局观象台. 高空气象观测规范 (使用P3-049型探空仪) 说明及问题综合解答. 1964.
    [33]
    中央气象局. 高空气象观测规范 (使用59型探空仪). 1976.
    [34]
    中国气象局监测网络司. 高空气象探测手册 (59-701微机处理系统部分). 北京: 气象出版社, 2001.
    [35]
    中国气象局监测网络司. L波段 (Ⅰ型) 高空气象探测系统业务操作手册. 北京: 气象出版社, 2005.
  • 加载中
  • -->

Catalog

    Figures(12)

    Article views (2925) PDF downloads(1174) Cited by()
    • Received : 2014-09-10
    • Accepted : 2015-03-02
    • Published : 2015-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint