Di Jingyue, Wang Zhi, Tian Hua, et al. A risk forecast method for southwest road damages based on precipitation. J Appl Meteor Sci, 2015, 26(3): 268-279. DOI:  10.11898/1001-7313.20150302.
Citation: Di Jingyue, Wang Zhi, Tian Hua, et al. A risk forecast method for southwest road damages based on precipitation. J Appl Meteor Sci, 2015, 26(3): 268-279. DOI:  10.11898/1001-7313.20150302.

A Risk Forecast Method for Southwest Road Damages Based on Precipitation

DOI: 10.11898/1001-7313.20150302
  • Received Date: 2014-10-13
  • Rev Recd Date: 2015-01-23
  • Publish Date: 2015-05-31
  • Landslides, debris-flows and other disasters along roads caused by precipitation occur frequently, becoming one of the most important factors of roads damages. Yunnan, Guizhou, Sichuan and Chongqing are especially prone to road damages. Based on the information of road damages, the corresponding precipitation data from January 2007 to July 2013 and 24 h precipitation forecast data from July 2012 to July 2013, probability forecast models are adopted to describe probabilistic relations between precipitation and road damages. First, precipitation factors of the day and over the past two, three, four, five, six, seven days and effective precipitation over the past 15 days are analyzed by the method of Kendall correlation, and precipitation of the day and the past effective precipitation are identified because of small correlation. Second, after the normality process to two factors, polynomial fitting, Fourier fitting and Gaussian fitting are applied to the frequency distribution of the disaster and two kinds of precipitation factor. According to the analysis of fitting correlation and the fitting error, Gaussian fitting method is selected to apply to the scattering distribution of precipitation and road damages. Finally, universal probability forecast models of road damages based on effective precipitation (Model Ⅰ) and comprehensive of the day and effective precipitation (Model Ⅱ) are established, and the fitting adjustable coefficients are 0.9108 and 0.8333, respectively. According to critical precipitation thresholds of two models, combining the grade of hazards risk and precipitation risk to road damages, two kinds of warning classification scheme based on precipitation are proposed. Two risk forecast models for road damages are developed. Risks of road damages are divided into five levels by probability of damage occurrence: Very small, small, medium, large and very large. Two risk forecast methods are tested, showing they are both applicable to describe the relation between precipitation and road damages, and have a high forecasting accuracy and strong reference value in disaster forecast. In comparison, two models have the same trend and results of Model Ⅱ are generally greater than Model Ⅰ in number. In the flood season and disaster-prone period, Model Ⅱ is more sensitive to subjective forecasts than Model Ⅰ.The risk forecasting systems of road damages are created for Southwest China based on two methods, and used in risk operation since the end of 2012 achieving good effects.
  • Fig. 1  Illustration of precipitation factor and frequency distribution of road damages

    Fig. 2  Illustration of effective precipitation factor and frequency distribution of regional road damages

    Fig. 3  Illustration of composite precipitation factor and frequency distribution of regional road damages

    Fig. 4  Illustration of current precipitation factor and frequency distribution of regional road damages

    Fig. 5  Probabilistic forecast curve of regional road damages based on effective precipitation factor (a) and composite precipitation factor (b)

    Fig. 6  Illustration of 24 h subjective forecast

    (a) from 0800 BT 30 Aug to 0800 BT 31 Aug in 2012, (b) from 0800 BT 31 Aug to 0800 BT 1 Sep in 2012

    Fig. 7  Illustration of road damage forecast based on Model Ⅰ

    (a)30 Aug 2012, (b)31 Aug 2012, (c)1 Sep 2012

    Fig. 8  Illustration of road damage forecast based on Model Ⅱ

    (a)30 Aug 2012, (b)31 Aug 2012, (c)1 Sep 2012

    Table  1  Evaluation of three kinds of fitting

    拟合类型 误差平方和 确定系数 调节确定系数 均方根误差
    高斯拟合 0.05506 0.9144 0.9108 0.03423
    傅里叶拟合 0.06493 0.8991 0.8925 0.03757
    多项式拟合 0.18060 0.7193 0.7073 0.06199
    DownLoad: Download CSV

    Table  2  Evaluation of three models

    降水因子 误差平方和 确定系数 调节确定系数 均方根误差
    有效降水因子 0.1339 0.8398 0.8333 0.05338
    综合降水因子 0.1876 0.7175 0.7055 0.06318
    当日降水因子 0.2292 0.6282 0.6124 0.06983
    DownLoad: Download CSV

    Table  3  Warning classification

    公路损毁灾害危险性等级 降水量危险性等级
    极低危险性 低危险性 中危险性 高危险性 极高危险性
    极高危险区 3级预警区 4级预警区 5级预警区 5级预警区 5级预警区
    高危险区 2级预警区 3级预警区 4级预警区 5级预警区 5级预警区
    中危险区 1级预警区 2级预警区 3级预警区 4级预警区 5级预警区
    低危险区 1级预警区 1级预警区 2级预警区 3级预警区 4级预警区
    不危险区 1级预警区 1级预警区 1级预警区 2级预警区 3级预警区
    DownLoad: Download CSV

    Table  4  Meaning of warning classification, the possibility of disaster and defensive measures

    预警等级 灾害发生情况 (24 h内) 防御措施
    1级预警区 灾害发生可能性极小 不采取措施
    2级预警区 灾害发生可能性较小 启动重要灾害隐患点的群测群防工作
    3级预警区 灾害发生可能性中等 (注意) 注意对灾害点的监测、采取防御措施,提醒危险区内的人员注意灾害动态
    4级预警区 灾害发生可能性较大 (预警) 应加强对灾害点的监测,对灾害危险区应开展预防应急措施
    5级预警区 灾害发生可能性极大 (警报) 应全天候对灾害点进行监测,建立防御措施和救灾体系,组织紧急疏散通道等
    DownLoad: Download CSV

    Table  5  Predictions of two models from 2012 to 2013

    预报模型 1级预警 2级预警 3级预警 4级预警 5级预警
    模型Ⅰ 1 18 47 27 14
    模型Ⅱ 0 13 53 27 14
    DownLoad: Download CSV

    Table  6  Probabilistic forecasts of road damages (unit:%)

    预报日期 巴中 南江 冕宁 泸定 富顺 雷波
    模型Ⅰ 模型Ⅱ 模型Ⅰ 模型Ⅱ 模型Ⅰ 模型Ⅱ 模型Ⅰ 模型Ⅱ 模型Ⅰ 模型Ⅱ 模型Ⅰ 模型Ⅱ
    2012-08-30 32 50 14 30 62 65 23 36 38 44 17 34
    2012-08-31 81 89 81 89 66 67 23 36 93 83 39 55
    2012-09-01 74 71 64 66 74 71 36 52 95 86 45 62
    DownLoad: Download CSV
  • [1]
    殷坤龙, 陈丽霞, 张桂荣, 等.区域滑坡灾害预测预警与风险评价.地学前缘, 2007, 14(6):85-97. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200706012.htm
    [2]
    文科军, 王礼先, 谢宝元, 等.暴雨泥石流实时预报的研究.北京林业大学学报, 1998, 20(6):59-64. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY806.010.htm
    [3]
    高速, 周平根, 董颖, 等.泥石流预测、预报技术方法的研究现状浅析.工程地质学报, 2002, 10(3):279-283. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200203010.htm
    [4]
    邱骋, 王纯祥, 江崎哲郎, 等.基于边坡单元的公路眼线滑坡危险度概率分析.岩土力学, 2005, 26(11):1731-1736. doi:  10.3969/j.issn.1000-7598.2005.11.007
    [5]
    谭炳炎, 段爱英.山区铁路沿线暴雨泥石流预报的研究.自然灾害学报, 1995, 4(2):43-52. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH199502008.htm
    [6]
    谭万沛, 韩庆玉.四川省泥石流预报的区域临界雨量指标研究.灾害学, 1992, 7(2):37-42. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU199202007.htm
    [7]
    姚令侃.用泥石流发生频率及暴雨频率推求临界雨量的探讨.水土保持学报, 1988, 2(4):72-77. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS198804011.htm
    [8]
    魏永明, 谢又予.降雨型泥石流 (水石流) 预报模型研究.自然灾害学报, 1997, 6(4):48-54. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH704.007.htm
    [9]
    姚学祥, 徐晶, 薛建军, 等.基于降水量的全国地质灾害潜势预报模式.中国地质灾害与防治学报, 2005, 16(4):97-102. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200504022.htm
    [10]
    刘罗曼.用主成分回归分析解决回归模型中复共线性问题.沈阳师范大学学报:自然科学版, 2008, 26(1):42-44. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSX200801012.htm
    [11]
    黄嘉佑, 黄茂怡.主分量逐步筛选因子典型相关分析及其预报试验.应用气象学报, 2000, 11(1):72-78. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2000S1008.htm
    [12]
    陶云, 段旭.云南降水正态分布特征的初探.气象科学, 2003, 23(2):161-167. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200302004.htm
    [13]
    胡文东, 陈晓光, 李艳春, 等.宁夏月、季、年降水量正态性分析.中国沙漠, 2006, 26(6):963-968. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200711005145.htm
    [14]
    方建刚, 毛明策, 程肖侠.陕西降水的正态分布特征分析.西北大学学报:自然科学版, 2009, 39(1):131-136. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ200901040.htm
    [15]
    王纪军, 任国玉, 匡晓燕, 等.河南省月和年降水量正态性分析.气候与环境研究, 2010, 15(4):522-528. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201004022.htm
    [16]
    陈学君, 苏仲岳, 李仲龙, 等.年降水量数据的正态变换方法对比分析.干旱气象, 2012, 30(3):459-464. http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201203025.htm
    [17]
    张国平.有效雨量和滑坡泥石流灾害概率模型.气象, 2014, 40(7):886-890. doi:  10.7519/j.issn.1000-0526.2014.07.013
    [18]
    徐晶, 张国平, 张芳华, 等.基于Logistic回归的区域地质灾害综合气象预警模型.气象, 2007, 33(12):3-8. doi:  10.7519/j.issn.1000-0526.2007.12.001
    [19]
    刘春, 张春辉, 郭萨萨.基于能量模型的水稻生长模型.应用气象学报, 2013, 24(2):240-247. doi:  10.11898/1001-7313.20130212
    [20]
    殷坤龙, 张桂荣, 龚日祥, 等. 浙江省突发性地质灾害预警预报. 武汉: 中国地质大学出版社, 2005. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [21]
    刘传正.中国地质灾害气象预警方法与应用.岩土工程界, 2004, 7(7):17-18. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201504028.htm
    [22]
    梁莉, 赵琳娜, 齐丹, 等.基于贝叶斯原理降水订正的水文概率预报试验.应用气象学报, 2013, 24(4):416-424. doi:  10.11898/1001-7313.20130404
    [23]
    王晨稀.短期集合降水概率预报试验.应用气象学报, 2005, 16(1):78-87. doi:  10.11898/1001-7313.20050110
    [24]
    林明智, 毕宝贵, 乔林.中央气象台短期降雨预报水平初步分析.应用气象学报, 1995, 6(4):392-399. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19950461&flag=1
    [25]
    邓雪娇, 胡胜, 闫敬华.主客观天气预报质量对比分析.应用气象学报, 2003, 14(6):730-738. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030692&flag=1
    [26]
    郑卫江, 吴焕萍, 罗兵, 等.GIS技术在台风预报服务产品制作系统中的应用.应用气象学报, 2010, 21(2):250-255. doi:  10.11898/1001-7313.20100216
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(6)

    Article views (2535) PDF downloads(532) Cited by()
    • Received : 2014-10-13
    • Accepted : 2015-01-23
    • Published : 2015-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint