Xu Shihui, Xu Xiaobin, Lin Weili, et al. Increased mixing ratio of surface ozone by nighttime convection process over the North China Plain. J Appl Meteor Sci, 2015, 26(3): 280-290. DOI:  10.11898/1001-7313.20150303.
Citation: Xu Shihui, Xu Xiaobin, Lin Weili, et al. Increased mixing ratio of surface ozone by nighttime convection process over the North China Plain. J Appl Meteor Sci, 2015, 26(3): 280-290. DOI:  10.11898/1001-7313.20150303.

Increased Mixing Ratio of Surface Ozone by Nighttime Convection Process over the North China Plain

DOI: 10.11898/1001-7313.20150303
  • Received Date: 2014-09-30
  • Rev Recd Date: 2015-02-10
  • Publish Date: 2015-05-31
  • Surface ozone and other reactive gases are observed at Gucheng (39°08′57″N, 115°44′02″E) in Hebei Province of China from June to September in 2013. There are 10 cases with rapid increases of the mixing ratio of surface ozone, and sharp decreases of the mixing ratios of nitric oxides and carbon monoxide when convection processes occurs at night. The mixing ratio of surface ozone mostly increases from less than 30×10-9 to 60×10-9-80×10-9 within less than 1 hour and stays at a higher level during the night and the next morning than that on undisturbed days. Such phenomenon cannot be explained by photochemical production. The increase rate of surface ozone level is not correlated with wind speed. Therefore, the change in ozone cannot be attributed to horizontal transport of polluted airmass.To understand the phenomenon, meteorological data from Gucheng and from ECMWF reanalysis are analyzed. Surface pseudo-equivalent potential temperature (θse) for each case is calculated from the simultaneously measured meteorological data. In all nighttime cases of convection process, the surface θse values decrease dramatically within a short time, coinciding with the steep increases of the ozone level and the wind speed. This suggests that the mixing ratio of surface ozone is enhanced by descending air from aloft. The convective process occurs in the warm area ahead of the front in most cases except for once near the cold front. These clearly indicate that convective downdrafts transport air with higher ozone and lower θse from upper atmosphere to the surface layer. With the vertical profiles of θse values calculated from ECMWF reanalysis data, levels of origins of downdrafts are estimated as from around 500-800 hPa. Vertical profiles of ozone observed using an unmanned aircraft near the station show that ozone mixing ratio over the boundary layer at dusk is higher than 60×10-9, supporting the view that the increased mixing ratio of surface ozone during and after the nighttime convection process is caused by air descending from the lower to mid free-troposphere. The phenomena with ozone enhancement is also observed at an urban station in Bejiing. In most cases when Gucheng and Beijing urban are impacted by the same convective systems, and ozone and θse at both sites show similar trends. All above implies that ozone mixing ratio maintains around 60×10-9-80×10-9 in the mid and lower free-troposphere over the North China Plain in summer and early autumn, and ozone increase by convective downdrafts is able to impact a large area of the North China Plain. Compared with other places, convection process causes larger ozone increase, which may exert stronger impact on the atmospheric environment.
  • Fig. 1  Average diurnal variation of O3(dashed line) at Gucheng for normal days during Jun-Sep in 2013, and diurnal variations of O3, NOx and CO on the days with nighttime convection process

    (the grey indicates the period with convection process)

    Fig. 2  Variations of O3, θse and wind speed before, during and after convection processes on 25 Jun (a), 2 Jul (b), 4 Aug (c) and 12 Sep (d) in 2013

    Fig. 3  Radar echoes received at Daxing, Beijing at 2000 BT 4 Aug 2013(elevation:1.5°, range:240 km)(a) and vertical profile of ω along 115.5°E (unit:Pa·s-1)(b)

    Fig. 4  θse(the shaded) and wind (vector) at surface (a) and 850 hPa (b) at 2000 BT 4 Aug 2013

    (the circle indicates the range of radar echo, the filled triangle indicates the location of Gucheng)

    Fig. 5  Vertical profile of θse over Gucheng at times around four different convection processes during Jun-Sep in 2013

    (circles indicate the corresponding θse observed on the ground in processes)

    Fig. 6  O3 profiles observed at Gucheng at dusk on 16 Jun 2013

    Fig. 7  Maxing ratios of O3 and θse observed at Gucheng and in Beijing urban when convection processes occurred on 4 Aug, 15 Aug and 12 Sep in 2013

    Table  1  List of convection processes over Gucheng during Jun-Sep in 2013 and respective changes of O3 level

    日期 O3迅速
    升高时段
    抬升前1 h
    最小值/10-9
    抬升后1 h
    最大值/10-9
    O3混合比
    变化/10-9
    最大瞬时
    风速/(m·s-1)
    06-25 18:10—18:20 16.5 72.4 55.9 16.4
    07-02 01:50—02:10 2.9 44.3 41.4 12.8
    07-31 00:50—01:20 0.6 64.1 63.5 9.8
    08-03 00:30—01:30 15.2 68.3 53.1 12.2
    08-04 20:00—20:40 29.7 77.1 47.4 20.0
    08-07 02:50—03:30 2.6 66.7 64.1 14.7
    08-14 00:00—00:10 10.1 67.3 57.2 14.0
    08-15 00:00—00:20 2.6 72.6 70.0 14.3
    09-12 22:00—22:20 3.0 53.0 50.0 17.9
    09-13 21:20—22:10 2.2 47.2 45.0 13.0
    DownLoad: Download CSV

    Table  2  Some features of airmasses from high altitudes descending to Gucheng during June-September in 2013

    日期 O3抬升后1 h
    最大值/10-9
    前1 h
    平均θse/K
    后1 h
    平均θse/K
    Δθse/K 下沉气流
    来源高度/hPa
    06-25 72.4 345.3 330.2 -15.1 600~700
    07-02 44.3 351.2 340.6 -11.2 500以上
    07-31 64.1 355.4 336.3 -19.1 700~800
    08-03 68.3 348.4 332.6 -15.8 700~800
    08-04 77.1 372.2 333.4 -38.8 600~700
    08-07 66.7 368.7 347.1 -21.6 700~800
    08-14 67.3 361.9 340.5 -21.4 700~800
    08-15 72.6 363.2 345.8 -17.4 700~800
    09-12 53.0 334.1 321.3 -12.8 600~700
    09-13 47.2 336.2 323.8 -12.4 500~600
    DownLoad: Download CSV
  • [1]
    Thompson A M, Tao W K, Pickering K E, et al.Tropical deep convection and ozone formation.Bull Amer Meteor Soc, 1997, 78(6):1043-1054. doi:  10.1175/1520-0477(1997)078<1043:TDCAOF>2.0.CO;2
    [2]
    Apel E C, Olson J R, Crawford J H, et al.Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere.Atmos Chem Phys, 2012, 12:27243-27284. http://www.oalib.com/paper/2697731#.WQwjLvl6-0I
    [3]
    李冰, 刘小红, 洪钟祥, 等.深对流云输送对于对流层O3、NOx再分布的作用.气候与环境研究, 1999, 4(3):291-296. http://www.cnki.com.cn/Article/CJFDTotal-QHYH199903009.htm
    [4]
    银燕, 曲平, 金莲姬, 等.热带深对流云对CO、NO、NOx和O3的垂直输送作用.大气科学, 2010, 34(5):925-936. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201005007.htm
    [5]
    Ding A, Wang T, Xue L, et al.Transport of north China air pollution by midlatitude cyclones:Case study of aircraft measurements in summer 2007.J Geophys Res, 2009, 114(D08304):1-16. doi:  10.1029/2008JD011023/full
    [6]
    Kunz H, Speth P.Variability of near-ground ozone concentrations during cold front passages-a possible effect of tropopause folding events.J Atmos Chem, 1997, 28(1-3):77-95. doi:  10.1023/A:1005867229466
    [7]
    Betts A K, Gatti L V, Cordova A M, et al.Transport of ozone to the surface by convective downdrafts at night.J Geophys Res, 2002, 107(D20):8046. doi:  10.1029/2000JD000158
    [8]
    Sahu L K, Lal S.Changes in surface ozone levels due to convective downdrafts over the Bay of Bengal.Geophys Res Lett, 2006, 33(10):L10807. doi:  10.1029/2006GL025994/references
    [9]
    Grant D D, Fuentes J D, DeLonge M S, et al.Ozone transport by mesoscale convective storms in western Senegal.Atmos Environ, 2008, 42(30):7104-7114. doi:  10.1016/j.atmosenv.2008.05.044
    [10]
    Weber R O, Prévt A S H.Climatology of ozone transport from the free troposphere into the boundary layer south of the Alps during North Foehn.J Geophy Res, 2002, 107(D3):ACH 4-1-ACH 4-6. doi:  10.1029/2001JD000987/full
    [11]
    Lelieveld J, Crutzen P J.Role of deep cloud convection in the ozone budget of the troposphere.Science, 1994, 264(5166):1759-1761. doi:  10.1126/science.264.5166.1759
    [12]
    刘小红, 洪钟祥, 李家伦, 等.北京气象塔秋季大气O3, NOx及CO浓度变化的观测实验.自然科学进展, 2000, 10(4):52-56. http://www.cnki.com.cn/Article/CJFD2000-ZKJZ200004007.htm
    [13]
    Lin W, Xu X, Ge B, et, al.Gaseous pollutants in Beijing urban area during the heating period 2007-2008:Variability, sources, meteorological, and chemical impacts.Atmos Chem Phys, 2011, 11(15):8157-8170. doi:  10.5194/acp-11-8157-2011
    [14]
    Zhu T, Lin W, Song Y, et al.Downward transport of ozone-rich air near Mt Everest.Geophys Res Lett, 2006, 33(23):L23809. doi:  10.1029/2006GL027726
    [15]
    杨柳, 王体健, 吴蔚, 等.热带气旋对香港地区臭氧污染影响的初步研究.热带气象学报, 2011, 27(1):109-117. http://www.cnki.com.cn/Article/CJFDTotal-RDQX201101012.htm
    [16]
    高会旺, 黄美元, 余方群.大气污染物对流垂直输送作用的探讨.环境科学, 1998, 19(4):3-6. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ804.000.htm
    [17]
    王晓云, 潘莉卿, 吕伟林, 等.北京城区冬季空气污染物垂直分布与气象状况的观测分析.应用气象学报, 2001, 12(3):279-286. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010339&flag=1
    [18]
    丁国安, 孟昭阳, 于海青, 等.北京城区大气边界层空气污染特征观测研究.应用气象学报, 2002, 13(特刊Ⅰ):82-91. http://www.cnki.com.cn/Article/CJFDTotal-YYQX2002S1008.htm
    [19]
    Lin W, Xu X, Ge B, et al.Characteristics of gaseous pollutants at Gucheng, a rural site southwest of Beijing.J Geophys Res, 2009, 114(D2):D00G14. doi:  10.1029/2008JD010339/full#footer-citing
    [20]
    刘希文, 徐晓斌, 林伟立.北京及周边地区典型站点近地面O3的变化特征.中国环境科学, 2010, 30(7):946-953. http://www.cnki.com.cn/Article/CJFDTotal-ZGHJ201007017.htm
    [21]
    Zipser E J.Mesoscale and convective-scale downdrafts as distinct components of squall-line structure.Mon Wea Rev, 1977, 105(12):1568-1589. doi:  10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2
    [22]
    Zipser E J.The Role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance.J Appl Meteorol, 1969, 8(5):799-814. doi:  10.1175/1520-0450(1969)008<0799:TROOUC>2.0.CO;2
    [23]
    Betts A K.The Thermodynamic transformation of the tropical subcloud layer by precipitation and downdrafts.J Atmos Sci, 1976, 33(6):1008-1020. doi:  10.1175/1520-0469(1976)033<1008:TTTOTT>2.0.CO;2
    [24]
    盛裴轩, 毛节泰, 李建国, 等. 大气物理学. 北京: 北京大学出版社, 2003. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [25]
    慕熙昱, 党人庆, 陈秋萍, 等.一次飑线过程的雷达回波分析与数值模拟.应用气象学报, 2007, 18(1):42-49. doi:  10.11898/1001-7313.20070108
    [26]
    葛润生, 姜海燕.北京地区雹暴气流结构的研究.应用气象学报, 1998, 9(1):1-7. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980101&flag=1
    [27]
    Ding A J, Wang T, Thouret V, et al.Tropospheric ozone climatology over Beijing:Analysis of aircraft data from the MOZAIC program.Atmos Chem Phys, 2008, 8(1):1-13. doi:  10.5194/acp-8-1-2008
    [28]
    徐晓斌, 林伟立.卫星观测的中国地区1979-2005年对流层臭氧变化趋势.气候变化研究进展, 2010, 6(2):100-105. http://www.cnki.com.cn/Article/CJFDTotal-QHBH201002007.htm
    [29]
    Mckee D.Tropospheric Ozone:Human Health and Agricultural Impacts.New York:Lewis Publishers, 1994.
    [30]
    王春乙, 关福来.O3浓度变化对我国主要农作物产量的可能影响.应用气象学报, 1995, 6(增刊Ⅰ):69-74. http://www.cnki.com.cn/Article/CJFDTotal-YYQX5S1.009.htm
    [31]
    彭丽, 林云萍, 周广强, 等.我国北方地区对流层中下层臭氧收支.应用气象学报, 2009, 20(6):665-672. doi:  10.11898/1001-7313.20090603
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(2)

    Article views (3843) PDF downloads(1042) Cited by()
    • Received : 2014-09-30
    • Accepted : 2015-02-10
    • Published : 2015-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint