Liu Na, Li Shuanglin. Short-term climate prediction for summer rainfall based on time-scale decomposition. J Appl Meteor Sci, 2015, 26(3): 328-337. DOI:  10.11898/1001-7313.20150308.
Citation: Liu Na, Li Shuanglin. Short-term climate prediction for summer rainfall based on time-scale decomposition. J Appl Meteor Sci, 2015, 26(3): 328-337. DOI:  10.11898/1001-7313.20150308.

Short-term Climate Prediction for Summer Rainfall Based on Time-scale Decomposition

DOI: 10.11898/1001-7313.20150308
  • Received Date: 2014-09-25
  • Rev Recd Date: 2015-02-28
  • Publish Date: 2015-05-31
  • By using one set of hindcasted integration of NCEP Climate Forecast System Version 2.0 (CFSv2) beginning from April during 1982-2008, for summer seasonal forecast, along with observations and reanalysis datasets, a downscaling scheme with time-scale decomposition is developed for summer rainfall prediction of the Yangtze-Huai Basins and North China. First, both the predictand and selected predictors are decomposed into inter-annual and decadal scales through Fast Flourier Transformation filtering. And then two downscaling models are separately built, predicted results for two timescales are combined to represent the total prediction. By using the scheme, the summer rainfall of 1982-2008 is hindcasted and compared with CFSv2 raw prediction first. A cross validation shows that skills in the present scheme are significantly improved with increased spatial and temporal correlation coefficients and decreased root mean square error, in comparison with the raw prediction. The spatial correlations with observations for both the Yangtze-Huai Basins and North China have the maximum exceeding 0.8 and a long-term average of 0.53, 0.51, greater than the original-0.06, -0.01 for two regions. The predicted rainfall temporal correlation at each station is also improved, with the regional mean increased from-0.2 to 0.2 in raw model prediction to about 0.5 after downscaling, significant at 0.01 level. The root mean square error exhibits a decrease with the rate of exceeding 10% at most of stations. Then a five-year hindcast from 2009 to 2013 is performed and used for validation as independent samples. Results suggest that spatial correlations of the predicted rainfall with the observed in five samples are significantly higher than the raw prediction, with the mean increased from 0.24, 0.08 to 0.37, 0.44 for two regions. Spatial patterns of rainfall anomaly percentage in two of these independent samples are reasonably closer to observations. Also, the predicted rainfall strength is much closer to the observation, comparing to the raw prediction. Finally, the scheme is applied for the real-time prediction of summer rainfall in 2014. The prediction result displays more rainfall over the mid-lower Reaches of the Yangtze and over the north region of the Yellow River valley, with an anomaly percentage of 20%, along with rainfall anomaly percentage of-10%. Compared with observations, the rainfall anomaly pattern can be predicted to some extent through the downscaling method, especially over the southern region of Yellow River.
  • Fig. 1  Stations over Yangtze-Huai Basins and North China

    Fig. 2  Pattern correlations of observed rainfall anomaly percentage to CFSv2 outputs, downscaling results from 1982 to 2008(dashed line denotes passing the test of 0.05 level)

    Fig. 3  The spatial distribution of temporal correlations of observed rainfall anomaly percentage to CFSv2 outputs (a) and downscaling results (b)(the shaded in Fig. 3b denotes passing the test of 0.01 level)

    Fig. 4  Distributions of D from 1982 to 2008

    Fig. 5  The same as in Fig. 2, but for the independent validation periods from 2009 to 2013

    Fig. 6  The rainfall anomaly percentage patterns of observations, CFSv2 outputs and downscaling predictions for 2011 and 2013

    Fig. 7  The rainfall anomaly percentage patterns of observations (a) and the downscaling prediction (b) in 2014

    Table  1  Periods and key regions of selected predictors in downscaling schemes on two timescales

    时间尺度 预测因子 所选因子的时段及区域
    对江淮地区预测 对华北地区预测
    年代际 AMO指数 前一年11月 前一年11月
    PDO指数 前一年12月 前一年12月
    年际 NOAA海表温度 前一年冬季
    (10°S~10°N, 80°~110°W)
    同年3月
    (0°~10°N, 120°~140°E)
    ERA-interim 500 hPa高度场 前一年12月
    (40.5°~60°N, 110°~140°E)
    CFSv2 500 hPa高度场 同年夏季
    (30°S~60°N, 70°E~180°)
    同年夏季
    (10°S~20°N, 0°~100°E)
    CFSv2 850 hPa经向风场 同年夏季
    (10°S~20°N, 70°~110°E)
    同年夏季
    (10°~30°N, 130°~150°E)
    ERA-interim海平面气压 同年1月
    (20°~40°S, 100°~140°W)
    DownLoad: Download CSV
  • [1]
    林朝晖, 李旭, 赵彦, 等.中国科学院大气物理研究所短期气候预测系统的改进及其对1998年全国汛期旱涝形势的预测.气候与环境研究, 1998, 3(4):340-348. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH804.005.htm
    [2]
    李维京, 张培群, 李清泉, 等.动力气候模式预测系统业务化及其应用.应用气象学报, 2005, 16(增刊Ⅰ):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2005S1000.htm
    [3]
    颉卫华, 吴统文.全球大气环流模式BCC_AGCM2.0.1对1998年夏季江淮流域强降水过程的回报试验研究.大气科学, 2010, 34(5):962-978. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200510001625.htm
    [4]
    魏凤英, 张先恭.中国夏季降水趋势分布的一个客观预测方法.气候与环境研究, 1998, 3(3):218-226. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH803.003.htm
    [5]
    黄茂怡, 黄嘉佑.CCA对中国夏季降水场的预测试验和诊断结果.应用气象学报, 2000, 11(增刊Ⅰ):31-39. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2000S1003.htm
    [6]
    Liu Ying, Fan Ke.A new statistical downscaling model for autumn precipitation in China.Int J Climatol, 2012, 33:1321-1336, doi: 10.1002/joc.3514.
    [7]
    彭京备, 陈烈庭, 张庆云.多因子和多尺度合成中国夏季降水预测模型及预测试验.大气科学, 2006, 30(4):596-608. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200604005.htm
    [8]
    陈丽娟, 李维京, 张培群, 等.降尺度技术在月降水预测中的应用.应用气象学报, 2003, 14(6):648-655. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX200306001.htm
    [9]
    顾伟宗, 陈丽娟, 李维京, 等.降尺度方法在中国不同区域夏季降水预测中的应用.气象学报, 2012, 70(2):202-212. doi:  10.11676/qxxb2012.020
    [10]
    郑志海, 任宏利, 黄建平.基于季节气候可预测分量的相似误差订正方法和数值实验.物理学报, 2009, 58:7359-7367. doi:  10.3321/j.issn:1000-3290.2009.10.114
    [11]
    李维京, 郑志海, 孙丞虎.近年来我国短期气候预测中动力相似预测方法研究与应用进展.大气科学, 2013, 37(2):341-350. doi:  10.3878/j.issn.1006-9895.2012.12311
    [12]
    Wang Huijun, Fan Ke.A new scheme for improving the seasonal prediction of summer precipitation anomalies.Wea Forecasting, 2009, 24:548-554. doi:  10.1175/2008WAF2222171.1
    [13]
    封国林, 赵俊虎, 支蓉, 等.动力-统计客观定量化汛期降水预测研究新进展.应用气象学报, 2013, 24(6):656-665. doi:  10.11898/1001-7313.20130602
    [14]
    钱维宏, 陆波.我国汛期季度降水预测得分和预测技巧.气象, 2010, 36(10):1-7. doi:  10.7519/j.issn.1000-0526.2010.10.001
    [15]
    张庆云, 卫捷, 陶诗言.近50年华北干旱的年代际和年际变化及大气环流特征.气候与环境研究, 2003, 8(3):307-318. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200303004.htm
    [16]
    赵平, 周秀骥.近40年我国东部降水持续时间和雨带移动的年代际变化.应用气象学报, 2006, 17(5):548-556. doi:  10.11898/1001-7313.20060512
    [17]
    范可, 林美静, 高煜中.用年际增量方法预测华北汛期降水.中国科学D辑:地球科学, 2008, 38(11):1452-1459. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200811014.htm
    [18]
    魏凤英.华北干旱的多时间尺度组合预测模型.应用气象学报, 2003, 14(5):583-592. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030573&flag=1
    [19]
    Liu Na, Li Shuanglin.Predicting summer rainfall over the Yangtze-Huai region based on time-scale decomposition statistical downscaling.Wea Forecasting, 2014, 29:162-176. doi:  10.1175/WAF-D-13-00045.1
    [20]
    Han Leqiong, Li Shuanglin, Liu Na.An approach for improving short-term prediction of summer rainfall over North China by decomposing interannual and decadal variability.Adv Atmos Sci, 2014, 31:435-448. doi:  10.1007/s00376-013-3016-0
    [21]
    Li S, Bates G.Influence of the Atlantic multidecadal oscillation on the winter climate of east China.Adv Atmos Sci, 2007, 24:126-135, doi: 10.1007/s00376-007-0126-6.
    [22]
    Yoon J, Yeh S W.Influence of the Pacific decadal oscillation on the relationship between El Nio and the northeast Asian summer monsoon.J Climate, 2010, 23:4525-4537. doi:  10.1175/2010JCLI3352.1
    [23]
    Saha S, Nadiga S, Thiaw C, et al.The NCEP climate forecast system.J Climate, 2006, 19:3483-3517. doi:  10.1175/JCLI3812.1
    [24]
    刘颖, 范可, 张颖.基于CFS模式的中国站点夏季降水统计降尺度预测.大气科学, 2013, 37(6):1287-1296. doi:  10.3878/j.issn.1006-9895.2012.12143
    [25]
    Dee D P, Uppala S M, Simmons A J, et al.The ERA-interim reanalysis:Configuration and performance of the data assimilation system.Quarterly J Royal Meteo Soc, 2011, 137:553-597. doi:  10.1002/qj.v137.656
    [26]
    Smith T M, Reynolds R W, Peterson T C, et al.Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880-2006).J Clim, 2008, 21:2283-2296. doi:  10.1175/2007JCLI2100.1
    [27]
    Huang R H, Wu Y F.The influence of ENSO on the summer climate change in China and its mechanism.Adv Atmos Sci, 1989, 6:21-32. doi:  10.1007/BF02656915
    [28]
    陈隽, 孙淑清.东亚冬季风异常与全球大气环流变化:Ⅰ.强弱冬季风影响的对比研究.大气科学, 1999, 23(1):101-111. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK901.011.htm
    [29]
    黄荣辉, 顾雷, 徐予红, 等.东亚夏季风爆发和北进的年际变化特征及其与热带西太平洋热状态的关系.大气科学, 2005, 29(1):20-36. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200501003.htm
    [30]
    Wang H J, Feng X.The interannual variability of Somali jet and its influences on the interhemispheric water vapor transport and the east Asian summer rainfall.Chinese Journal of Geophysics, 2003, 46:11-20. doi:  10.1002/cjg2.v46.1
    [31]
    Bretherton C, Smith C, Wallace J M.An intercomparison of methods for finding coupled patterns in climate data.J Climate, 1992, 5:541-560. doi:  10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2
    [32]
    赵俊虎, 杨杰, 封国林, 等.2011年我国夏季降水动力统计预测与异常成因.应用气象学报, 2013, 24(1):43-54. doi:  10.11898/1001-7313.20130105
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (2882) PDF downloads(1364) Cited by()
    • Received : 2014-09-25
    • Accepted : 2015-02-28
    • Published : 2015-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint