Yu Lianqing, Li Yuean, Gao Song, et al. Research and implementation of ensemble forecast product analysis and display platform. J Appl Meteor Sci, 2015, 26(3): 369-377. DOI:  10.11898/1001-7313.20150313.
Citation: Yu Lianqing, Li Yuean, Gao Song, et al. Research and implementation of ensemble forecast product analysis and display platform. J Appl Meteor Sci, 2015, 26(3): 369-377. DOI:  10.11898/1001-7313.20150313.

Research and Implementation of Ensemble Forecast Product Analysis and Display Platform

DOI: 10.11898/1001-7313.20150313
  • Received Date: 2014-11-06
  • Rev Recd Date: 2015-01-13
  • Publish Date: 2015-05-31
  • In response to the impendent requirement of ensemble forecast applications in modern weather forecast operations, an ensemble forecast product analysis and display platform named NUMBERS (NUmerical Model Blending and Ensemble foRecast System) is developed. The application background, requirement analysis, design of system architecture and function implementation are discussed in details. In addition, some key technologies such as dynamic page layout rendering and data pooling, are also described.First of all, the ensemble forecast platform is designed using the client-server architecture. On the server side, there is a data processing program that converts large amounts of ensemble numerical model output into product data to ensure the performance of client data visualization program. On the client side, there is a data visualization program and a management console program. The data visualization program provides features including ensemble product data analysis, blending of multiple deterministic models, customized geographic information service, layer-based graphics rendering, interactive configuration of graphics layers, and exporting of weather maps. The management console program provides a unified user interface to help users manage all settings of the platform.As there is a large difference in computing resource throughout the meteorology department, the ensemble forecast platform is designed to be cross-platform by employing a modular and stratified design approach with C++ is programming language.In order to enhance graphics rendering quality of weather maps, an innovative page layout rendering technique is proposed, allowing a flexible configuration of graphics elements like layers, titles and legends and creation of professionally-looking weather maps.As an effective abstraction of ensemble data may significantly improve working efficiency of forecasters, advanced ensemble prediction algorithms and graphics rendering technologies are incorporated into the platform, which support nearly all popular products including statistics quantities, probability forecast, stamps, spaghetti, plume and box-whiskers.Since September 2013, the platform has been put into operation in central meteorological observatory and nearly all observatories of province capitals. Ever since, the platform is further improved by adding new features and fixing bugs based on user feedbacks. In the future, the platform will be improved by incorporating the latest algorithms in ensemble prediction, enhancing support for professional forecast such as typhoon track prediction and short-term strong weather prediction, introducing ensemble prediction validation and improving interactive performance. Furthermore, all the features of the platform will be incorporated into the fourth edition MICAPS, which will play an important role in flourishing China ensemble forecast applications and improving operational capability.
  • Fig. 1  The architecture of ensemble forecast platform

    Fig. 2  The structure of national ensemble forecast operation system and flow of ensemble data

    Fig. 3  The rendering result in map export view

    Fig. 4  Product image export and file management features by the ensemble forecast management program

    Fig. 5  The box-whisker graphics rendered in ensemble forecast platform for weather forecast operation

    Table  1  Characteristics of ensemble forecast data

    特征 EC T639 GRAPES_MESO NCEP CMC
    数据格式 GRIB1 GRIB2 GRIB2 GRIB2 GRIB2
    预报时效/h 0~360 0~360 0~72 0~384 0~384
    延时/h 8~12 6 6 6~8 9~10
    成员数量 51 15 15 21 21
    分辨率 地面0.5°×0.5°,
    高空1°×1°
    0.28125°×0.28125° 0.15°×0.15° 1°×1° 1°×1°
    日数据量/GB 41.2 84.2 5.7 50 7.96
    天气要素 地面11个,
    高空7个
    地面24个,
    高空6个
    地面2个,
    高空5个
    地面27个,
    高空6个
    地面27个,
    高空6个
    DownLoad: Download CSV
  • [1]
    Epstein E S.Stochastic dynamic prediction.Tellus, 1969, 21(6):739-759. doi:  10.3402/tellusa.v21i6.10143
    [2]
    Leith S C.Theoretical skill of Monte Carlo forecasts.Mon Wea Rev, 1974, 102(6):409-418. doi:  10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
    [3]
    Tracton S M, Kalnay E.Operational ensemble prediction at the National Meteorological Center.Wea Forecasting, 1993, 8(3):379-398. doi:  10.1175/1520-0434(1993)008<0379:OEPATN>2.0.CO;2
    [4]
    Tracton S M, Du J.Short Range Ensemble Forecasting (SREF) at the National Center for Environmental Prediction//WMO Workshop on the Use of Ensemble Prediction.2000.
    [5]
    Molteni E, Buizza R, Palmer T N.The ECMWF ensemble prediction system:Meteorology and validation.Quarterly Journal of the Royal Meteorological Society, 1996, 122:73-119. doi:  10.1002/(ISSN)1477-870X
    [6]
    Toth Z, Kalney E.Ensemble forecasting at NMC:The generation of purtabations.Bull Amer Meteor Soc, 1993, 74(12):2317-2330. doi:  10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
    [7]
    Buizza R, Palmer T N.Impact of ensemble size on ensemble prediction.Mon Wea Rev, 1998, 126(9):2503-2518. doi:  10.1175/1520-0493(1998)126<2503:IOESOE>2.0.CO;2
    [8]
    Szungogh I, Toth Z. The effect of increased horizontal resolution on the NCEP global ensemble mean forecasts.Mon Wea Rev, 2002, 130(5):1125-1143. doi:  10.1175/1520-0493(2002)130<1125:TEOIHR>2.0.CO;2
    [9]
    杜钧.集合预报的现状与前景.应用气象学报, 2002, 13(1):16-28. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020102&flag=1
    [10]
    李泽椿, 陈德辉.国家气象中心集合数值预报业务系统的发展及应用.应用气象学报, 2002, 13(1):1-15. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020101&flag=1
    [11]
    段明铿, 王盘兴.集合预报方法研究及应用进展综述.南京气象学院学报, 2004, 27(2):279-288. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200402019.htm
    [12]
    李俊, 杜钧, 王明欢, 等.中尺度暴雨集合预报系统研发中的初值扰动试验.高原气象, 2009, 28(6):1365-1375. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200906017.htm
    [13]
    王晨稀, 姚建群, 梁旭东.上海区域降水集合预报系统的建立与运行结果的检验.应用气象学报, 2007, 18(2):173-180. doi:  10.11898/1001-7313.20070230
    [14]
    陈静, 薛纪善, 颜宏.一种新型的中尺度暴雨集合预报初值扰动方法研究.大气科学, 2005, 29(5):717-727. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200505004.htm
    [15]
    黄小刚, 费建芳, 陆汉城.基于集合Kalman滤波数据同化的热带气旋路径集合预报研究.大气科学, 2007, 31(3):468-478. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200703009.htm
    [16]
    张庆红, 张春喜, 张中锋, 等.热带气旋集合预报中的不确定性研究.地球物理学报, 2007, 50(3):701-706. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200703006.htm
    [17]
    陈法敬, 矫梅燕, 陈静.一种温度集合预报产品释用方法的初步研究.气象, 2011, 37(1):14-20. doi:  10.7519/j.issn.1000-0526.2011.01.002
    [18]
    王敏, 李晓莉, 范广洲, 等.区域集合预报系统2 m温度预报的校准技术.应用气象学报, 2012, 23(4):395-401. doi:  10.11898/1001-7313.20120402
    [19]
    邓国, 龚建东, 陈静.国家级区域集合预报系统研发和性能检验.应用气象学报, 2010, 21(5):513-523. doi:  10.11898/1001-7313.20100501
    [20]
    李月安, 曹莉, 高嵩, 等.MICAPS预报业务平台现状与发展.气象, 2010, 36(7):50-56. doi:  10.7519/j.issn.1000-0526.2010.07.010
    [21]
    吴焕萍, 罗兵, 王维国, 等.GIS技术在决策气象服务系统建设中的应用.应用气象学报, 2008, 19(3):380-385. doi:  10.11898/1001-7313.20080316
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(1)

    Article views (3784) PDF downloads(1346) Cited by()
    • Received : 2014-11-06
    • Accepted : 2015-01-13
    • Published : 2015-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint