物理量名称 | 单位 |
大气水汽总量 | mm |
比湿 | g·kg-1 |
相对湿度 | % |
水汽通量散度 | g·s-1·cm-2·hPa-1 |
温度平流 | K·s-1 |
涡度平流 | s-2 |
风场散度 | s-1 |
垂直风切变 | m·s-1 |
最佳对流有效位能 | J·kg-1 |
850 hPa与500 hPa温差 | ℃ |
850 hPa温度 | ℃ |
(最优)抬升指数 | ℃ |
总指数 | ℃ |
K指数 | ℃ |
沙氏指数 | ℃ |
假相当位温 | K |
Citation: | Tian Fuyou, Zheng Yongguang, Zhang Tao, et al. Sensitivity analysis of short-duration heavy rainfall related diagnostic parameters with point-area verification. J Appl Meteor Sci, 2015, 26(4): 385-396. DOI: 10.11898/1001-7313.20150401. |
Fig. 2 Schematic diagram of the point-area verification method
(the lattice field indicates the numerical analysis field, the solid black dots represent the basic datum station, verification stations, and the gray triangles are the AMOSs, the black circle denotes the searching coverage around verification stations)
Fig. 3 Sketch map of a, b, c and d affected by the point-area verification
(the black box represents the total sample space, the dotted ellipse indicates the forecast field while the solid black polygon represents the observational field, the dashed polygon is the observational field with the point-area verification method, the observational field of the point-area is definitely enlarged)
Fig. 4 Variation of scores with the searching radius and total precipitable water when the basic datum station is considered a short-duration heavy rainfall record while at least one AMOS has a record of short-duration heavy rainfall reported
(R=0 represents results obtained with the traditional point-point verification method) (a) threat scores, (b) bias, (c) false alarm ratio, (d) hit rate
Fig. 6 The same as in Fig. 4, but for the best lifted index
Fig. 7 The same as in Fig. 5, but for the best lifted index
Table 1 Names and units of parameters
物理量名称 | 单位 |
大气水汽总量 | mm |
比湿 | g·kg-1 |
相对湿度 | % |
水汽通量散度 | g·s-1·cm-2·hPa-1 |
温度平流 | K·s-1 |
涡度平流 | s-2 |
风场散度 | s-1 |
垂直风切变 | m·s-1 |
最佳对流有效位能 | J·kg-1 |
850 hPa与500 hPa温差 | ℃ |
850 hPa温度 | ℃ |
(最优)抬升指数 | ℃ |
总指数 | ℃ |
K指数 | ℃ |
沙氏指数 | ℃ |
假相当位温 | K |
Table 2 Parameters listed in descending order of TS, all the scores are obtained with the setting of 140 km searching radius and at least two AMOSs short-duration heavy rainfall reported
物理量 | 最佳阈值 | 单位 | T | B | F | H |
大气水汽总量 | 52 | mm | 0.275 | 1.645 | 0.653 | 0.570 |
K指数 | 35 | ℃ | 0.275 | 1.596 | 0.649 | 0.560 |
850 hPa比湿 | 13 | g·kg-1 | 0.263 | 1.542 | 0.657 | 0.629 |
850 hPa假相当位温 | 342 | K | 0.261 | 1.860 | 0.682 | 0.591 |
700 hPa假相当位温 | 342 | K | 0.256 | 1.938 | 0.691 | 0.599 |
925 hPa比湿 | 15 | g·kg-1 | 0.248 | 1.705 | 0.685 | 0.537 |
925 hPa假相当位温 | 348 | K | 0.235 | 1.564 | 0.688 | 0.488 |
沙氏指数 | 0 | ℃ | 0.235 | 1.714 | 0.699 | 0.516 |
最佳对流有效位能 | 500 | J·kg-1 | 0.226 | 1.972 | 0.722 | 0.548 |
700 hPa相对湿度 | 80 | % | 0.215 | 1.882 | 0.729 | 0.510 |
抬升指数 | -3 | ℃ | 0.213 | 1.523 | 0.709 | 0.443 |
最优抬升指数 | -3 | ℃ | 0.205 | 1.403 | 0.709 | 0.409 |
850 hPa相对湿度 | 85 | % | 0.192 | 1.363 | 0.721 | 0.380 |
925 hPa水汽通量散度 | -1×10-7 | g·s-1·cm-2·hPa-1 | 0.180 | 1.308 | 0.731 | 0.352 |
850 hPa水汽通量散度 | -1×10-7 | g·s-1·cm-2·hPa-1 | 0.149 | 1.006 | 0.741 | 0.260 |
700 hPa水汽通量散度 | 0×10-7 | g·s-1·cm-2·hPa-1 | 0.151 | 2.938 | 0.824 | 0.516 |
925 hPa散度 | -1×10-5 | s-1 | 0.147 | 1.048 | 0.750 | 0.262 |
925 hPa温度平流 | 5×10-6 | K·s-1 | 0.144 | 1.621 | 0.797 | 0.329 |
850 hPa温度平流 | 10×10-6 | K·s-1 | 0.143 | 1.607 | 0.797 | 0.326 |
500 hPa温度平流 | 10×10-6 | K·s-1 | 0.136 | 1.724 | 0.811 | 0.326 |
500 hPa温度 | 20 | ℃ | 0.129 | 1.401 | 0.805 | 0.273 |
0~3 km垂直风切变 | 7 | m·s-1 | 0.129 | 1.705 | 0.818 | 0.310 |
500 hPa涡度平流 | 2×10-10 | s-2 | 0.120 | 1.734 | 0.831 | 0.293 |
925 hPa涡度平流 | 0×10-10 | s-2 | 0.119 | 1.746 | 0.833 | 0.291 |
总指数 | 44 | ℃ | 0.117 | 1.444 | 0.823 | 0.255 |
0~1 km垂直风切变 | 7 | m·s-1 | 0.117 | 1.260 | 0.812 | 0.236 |
850 hPa散度 | -1×10-5 | s-1 | 0.116 | 0.842 | 0.773 | 0.191 |
850 hPa涡度平流 | 1×10-10 | s-2 | 0.114 | 1.558 | 0.832 | 0.261 |
0~6 km垂直风切变 | 11 | m·s-1 | 0.089 | 1.609 | 0.867 | 0.214 |
850 hPa与500 hPa温差 | 24 | ℃ | 0.072 | 1.838 | 0.896 | 0.191 |
[1] |
陶诗言.中国之暴雨.北京:科学出版社, 1980.
|
[2] |
陈炯, 郑永光, 张小玲, 等.中国暖季短时强降水分布和日变化特征及其与中尺度对流系统日变化关系分析.气象学报, 2013, 71(3):367-382. doi: 10.11676/qxxb2013.035
|
[3] |
田付友, 郑永光, 毛冬艳, 等.基于Γ函数的暖季小时降水概率分布.气象, 2014, 40(7):787-795. doi: 10.7519/j.issn.1000-0526.2014.07.002
|
[4] |
Doswell Ⅲ C A.Short-range Forecasting.Mesoscale Meteorology and Forecasting//Ray P E.Boston:American Meteorological Society, 1986.
|
[5] |
Etherton B, Santos P.Sensitivity of WRF forecasts for south Florida to initial conditions.Wea Forecasting, 2008, 23:725-740. doi: 10.1175/2007WAF2006115.1
|
[6] |
Torn R D, Hakim G J. Initial condition sensitivity of western Pacific extratropical transitions determined using ensemble-based sensitivity analysis.Mon Wea Rev, 2009, 137:3388-3406. doi: 10.1175/2009MWR2879.1
|
[7] |
常越, 薛纪善, 何金海.水汽场初值调整及其对华南降水预报贡献的研究.应用气象学报, 2000, 11(1):35-46. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000107&flag=1
|
[8] |
管成功, 陈起英, 王娟, 等.初值中云变量对T213预报性能的影响.应用气象学报, 2007, 18(5):594-600. doi: 10.11898/1001-7313.20070514
|
[9] |
王金成, 龚建东, 邓莲堂. GNSS反演资料在GRAPES_Meso三维变分中的应用.应用气象学报, 2014, 25(6):654-668. doi: 10.11898/1001-7313.20140602
|
[10] |
高郁东, 万齐林, 薛纪善, 等, 等.同化雷达估算降水率对暴雨预报的影响.应用气象学报, 2015, 26(1):45-56. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150105&flag=1
|
[11] |
Molinari J, Dudek M.Parameterization of convective precipitation in mesoscale numerical models:A critical review.Mon Wea Rev, 1992, 120:326-344. doi: 10.1175/1520-0493(1992)120<0326:POCPIM>2.0.CO;2
|
[12] |
沈新勇, 黄文彦, 王卫国, 等.利用TWP-ICE试验资料对比两种边界层参数化方案.应用气象学报, 2014, 25(4):385-396. doi: 10.11898/1001-7313.20140401
|
[13] |
Davies H C. Limitations of some common lateral boundary schemes used in regional NWP models.Mon Wea Rev, 1983, 111:1002-1012. doi: 10.1175/1520-0493(1983)111<1002:LOSCLB>2.0.CO;2
|
[14] |
Miller R C.Notes on Analysis and Severe-storm Forecasting Procedures of the Air Force Global Weather Central.Air Weather Service (MAC), USAF, Technical Report 200(Rev), 1972:1-183.
|
[15] |
Doswell C A, Brooks H E, Maddox R A.Flash flood forecasting:An ingredients-based methodology.Wea Forecasting, 1996, 11:560-581. doi: 10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2
|
[16] |
Martín F, Riosalido R, Esteban L de.The Sigüenza tornado:A case study based on convective ingredients concept and conceptual models.Meteorol Appl, 1997, 4:191-206. doi: 10.1017/S1350482797000479
|
[17] |
张小玲, 陶诗言, 孙建华.基于"配料"的暴雨预报.大气科学, 2010, 34(4):754-756. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201004009.htm
|
[18] |
国家气象中心. 中尺度天气分析业务技术规范. 2013: 1-31.
|
[19] |
Rasmussen E N, Blanchard A O.A baseline climatology of sounding-derived supercell and tornado forecast parameters.Wea Forecasting, 1998, 13:1148-1164. doi: 10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2
|
[20] |
Kunz M.The skill of convective parameters and indices to predict isolated and severe thunderstorms.Nat Hazards Earth Syst Sci, 2007, 7:327-342. doi: 10.5194/nhess-7-327-2007
|
[21] |
Haklander A J, Delden A Van.Thunderstorm predictors and their forecast skill for the Netherlands.Atmos Res, 2003, 67-68:273-299. http://www.sciencedirect.com/science/article/pii/S0169809503000565
|
[22] |
Tian F Y, Zheng Y G, Zhang T, et al.Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and eastern China.J Meteor Res, 2015, 29, doi: 10.1007/s13351-014-4119-y.
|
[23] |
任芝花, 赵平, 张强, 等.适用于全国自动站小时降水资料的质量控制方法.气象, 2010, 36(7):123-132. doi: 10.7519/j.issn.1000-0526.2010.07.019
|
[24] |
黄卓.气象预报产品质量评分系统.北京:中国气象局预测减灾司, 2001:9-11.
|
[25] |
Hilliker J L.The sensitivity of the number of correctly forecasted events to the threat score:A practical application.Wea Forecasting, 2004, 19:646-650. doi: 10.1175/1520-0434(2004)019<0646:TSOTNO>2.0.CO;2
|
[26] |
Wilks D S.Statistical Methods in the Atmospheric Sciences (3rd).New York:Academic Press, 2011:301-391.
|