Chen Shu, Zheng Xiangdong, Lin Weili, et al. Observational study on the ground-based UVI at Dangxiong of Tibet. J Appl Meteor Sci, 2015, 26(4): 482-491. DOI: 10.11898/1001-7313.20150410.
Citation: Chen Shu, Zheng Xiangdong, Lin Weili, et al. Observational study on the ground-based UVI at Dangxiong of Tibet. J Appl Meteor Sci, 2015, 26(4): 482-491. DOI: 10.11898/1001-7313.20150410.

Observational Study on the Ground-based UVI at Dangxiong of Tibet

More Information
  • Factors of solar zenith angle (SZA), cloud, ozone and snow cover modifying the surface ultraviolet index (UVI) in the Tibetan Plateau are presented by the TUV model simulations and the two-year continuous ground-based measurements at Dangxiong (30.48°N, 91.10°E, 4200 m a.s.l) from September 2009 to August 2011. Results show that the key factors affecting the UVI over the Tibetan region are SZA and cloud. Variations of cloud-free surface UVI can be characterized exactly as a simple empirical SZA function. The UVI cloud modification factor (CMF) generally reduces by 46% as the cloud amount increases from 0 to 100%. CMF might increase by 3%-6%, or even by 40% in individual cases if the solar disk is partly masked with broken clouds. The ozone valley enhances 12% summer surface UVI compared to plain regions of the similar latitudes. The winter short-term thin snow coverage could enhance 16% or less surface UVI, and this enhancement is lower than that from the simulations (23%). UVI attenuation caused by aerosols with optical depth of 0.02-0.1 is no more than 3%. As compared with UVI measured at Lhasa (29.67°N, 91.13°E, 3650 m a.s.l), Tuotuohe (34.22°N, 92.43°E, 4500 m a.s.l) and Waliguan (36.29°N, 100.90°E, 3810 m a.s.l), the difference of site-altitude is a key factor influencing the UVI. Under the same SZA conditions, the summer UVI at Lhasa is 7%-10% higher than that at Waliguan due to the southern thinner ozone layer, the ozone valley. Comparison with satellite-derived product shows that, averagely, the OMI-UVI is 80% higher than the ground-based values at Dangxiong but only 8.6% higher under cloud-free circumstances. The OMI-UVIs are all above 65% higher than those ground-based measurements at the other 3 sites but their cloud-free values are only 13%, 9% and 50% higher at Tuotuohe, Waliguan and Lhasa, respectively. Clouds and geographical mismatches between the satellite pixel and fixed ground-based observation site are supposed to be the main factors of higher space-based UVI values, particularly over Lhasa. As the ground-based UVI is more than 14, the coincident space-based UVI is generally 3% lower at Dangxiong owning to the broken clouds strengthening the in-situ radiation.
  • Fig  1.   Overview of UVI measured at Dangxiong

    Fig  2.   UVI (10 min mean) as a function of SZA observed at Dangxiong

    (a) all-sky, (b) cloud-free

    Fig  3.   Variations of CMF with changes of cloud amount at different SZAs

    Fig  4.   Comparison of UVI under conditions of different cloud coverage

    Fig  5.   UVI as a function of total ozone with SZA of 60°±2.5° under clear-sky condition

    Fig  6.   UVI Comparison between satellite-derived overpass and ground-based measurements at Dangxiong under all sky conditions (a) and clear-day only (b)

    Table  1   Investigation of influences from snow coverage on UVI at Dangxiong

    年份 日序 SZA=55° SZA=60° 臭氧总量/DU 积雪 反照率
    实测值 模式值 实测值 模式值
    2009 323 4.81 5.32 3.45 3.82 260 0.8
    2009 325 4.64 4.38 3.31 3.14 259 0.05
    2009 330 4.62 4.37 3.28 3.13 260 0.05
    2009 363 4.41 4.36 3.13 3.12 260 0.05
    2010 2 5.14 5.35 3.66 3.84 259 0.8
    2010 11 4.83 4.76 3.42 3.41 242 0.05
    DownLoad: CSV

    Table  2   Comparison of ground-based UVI at Dangxiong, Tutuhe, Lhasa, Waliguan

    太阳天
    顶角/(°)
    当雄 沱沱河 拉萨 瓦里关
    UVI 样本量 UVI 样本量 UVI 样本量 UVI 样本量
    60 2.46±0.85 16631 2.14±0.85 186 1.7±0.53 1162 2.13±0.69 4657
    50 4.41±1.61 17047 4.25±1.60 135 3.53±1.08 1039 3.56±1.36 2576
    40 6.57±2.63 12796 6.85±2.43 56 5.49±1.75 947 5.12±2.25 1966
    30 8.72±3.66 9340 9.09±2.98 71 7.19±2.50 642 6.58±3.19 1601
    20 11.06±4.61 7216 12.03±3.89 26 9.22±3.50 398 8.35±3.95 1171
    10 12.66±5.27 4582 10.16±3.30 369
    DownLoad: CSV

    Table  3   UVI relative differences between ground-based and OMI over 4 sites

    天气 当雄 沱沱河 拉萨 瓦里关
    相对差别/% 样本量 相对差别/% 样本量 相对差别/% 样本量 相对差别/% 样本量
    总体 80.1±166.1 545 86.8±156.5 104 91.9±114.9 765 67.8±136.0 2045
    云天 96.3±180.3 450 108.8±172.0 80 113.1±134.9 510 99.8±158.6 1327
    晴天 8.6±5.4 95 13.3±27.3 24 49.6±23.3 255 8.7±29.0 718
    DownLoad: CSV
  • 汤洁, 王炳忠, 张保洲, 等.紫外红斑效应参照谱、标准红斑辐射剂量和紫外指数.北京:中国标准出版社, 2007.
    World Health Organization.Global Solar UV Index:A Practical Guide.International Commission on Non-Ionizing Radiation Protection.2002.
    沈元芳, 况石.紫外线模式预报方法的研究和试验.应用气象学报, 2002, 13(增刊Ⅰ):223-231. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1024.htm
    Ren P B C, Sigernes F, Gjessing Y.Ground-based measurements of solar ultraviolet radiation in Tibet:Preliminary results. Geophys Res Letters, 1997, 24(11):1359-1362. DOI: 10.1029/97GL01319
    Norsang G, Kocbach L, Stamnes J, et al.Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau. Applied Physics Research, 2011, 3(1):37-46. https://www.researchgate.net/publication/276044082_Spatial_Distribution_and_Temporal_Variation_of_Solar_UV_Radiation_over_the_Tibetan_Plateau
    Zhou X, Luo C.Ozone valley over Tibetan plateau. Acta Meteorologica Sinica, 1994, 8(4):505-506. http://mall.cnki.net/magazine/Article/QXXW199404016.htm
    Liley J B, McKenzie R L.Where on Earth has the Highest UV?UV Radiation and its Effects:An Update.2006:26-37. http://www.niwascience.co.nz/rc/atmos/uvconference.
    Estupián J G, Raman S, Crescenti G H, et al.Effects of clouds and haze on UV-B radiation. Journal of Geophysical Research:Atmospheres (1984-2012), 1996, 101(D11):16807-16816. DOI: 10.1029/96JD01170
    Casale G, Meloni D, Miano S, et al.Solar UV-B irradiance and total ozone in Italy:Fluctuations and trends. Journal of Geophysical Research:Atmospheres (1984-2012), 2000, 105(D4):4895-4901. DOI: 10.1029/1999JD900303
    张晓春, 汤洁, 王炳忠.用Yankee (扬基) UVB-1型紫外辐射表测量大气中的紫外B辐射.青海环境, 2003(3):100-104. http://www.cnki.com.cn/Article/CJFDTOTAL-QHHJ200303002.htm
    Yankee Environmental Systems, Inc.UVB-1 Ultraviolet Pyranometer Installation and User Guide Version 2.0.http://www.yesinc.com/products/data/uvb1/.
    饶晓琴.青藏高原地区太阳紫外辐射的观测资料分析与数值模拟研究.北京:中国气象科学研究院, 2003:30-33.
    Tanskanen A, Lindfors A, Määttä A, et al.Validation of daily erythemal doses from ozone monitoring instrument with ground-based UV measurement data. Journal of Geophysical Research:Atmospheres (1984-2012), 2007, 112(D24):177-180. http://www.academia.edu/572512/Validation_of_daily_erythemal_doses_from_Ozone_Monitoring_Instrument_with_ground-based_UV_measurement_data
    Hofzumahaus A, Kraus A, Müller M.Solar actinic flux spectroradiometry:A technique for measuring photolysis frequencies in the atmosphere. Applied Optics, 1999, 38(21):4443-4460. DOI: 10.1364/AO.38.004443
    Madronich S, Flocke S, Zeng J, et al.Tropospheric ultraviolet-visible model (TUV), 2011.http://www2.acd.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model.
    Norsang G, Kocbach L, Tsoja W, et al.Ground-based measurements and modeling of solar UV-B radiation in Lhasa, Tibet. Atmospheric Environment, 2009, 43(8):1498-1502. DOI: 10.1016/j.atmosenv.2008.11.048
    徐祥德, 陈联寿.青藏高原大气科学试验研究进展.应用气象学报, 2007, 17(6):756-772. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606124&flag=1
    卓嘎, 徐祥德, 陈联寿.青藏高原对流云团东移发展的不稳定特征.应用气象学报, 2002, 13(4):448-456. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020460&flag=1
    陆龙骅, 周国贤, 张正秋.1992年夏季珠穆朗玛峰地区的太阳直接辐射和总辐射.太阳能学报, 1995, 16(3):229-233. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX503.000.htm
    Piacentini R D, Salum G M, Fraidenraich N, et al. Extreme total solar irradiance due to cloud enhancement at sea level of the NE Atlantic coast of Brazil. Renewable Energy, 2011, 36(1):409-412. DOI: 10.1016/j.renene.2010.06.009
    郑向东, 汤洁, 李维亮, 等.拉萨地区1998年夏季臭氧总量及垂直廓线的观测研究.应用气象学报, 2000, 11(2):173-179. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000226&flag=1
    蔡兆男, 王永, 郑向东, 等.利用探空资料验证GOME卫星臭氧数据.应用气象学报, 2009, 20(3):337-345. DOI: 10.11898/1001-7313.20090310
    王普才, 吴北婴, 章文星.影响地面紫外辐射的因素分析.大气科学, 1999, 23(1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK901.000.htm
    Kylling A, Dahlback A, Mayer B.The effect of clouds and surface albedo on UV irradiances at a high latitude site. Geophys Res Lett, 2000, 27(9):1411-1414. DOI: 10.1029/1999GL011015
    蒋熹.冰雪反照率研究进展.冰川与冻土, 2006, 28(5):728-738. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200605015.htm
    孙治安, 翁笃鸣.青藏高原地区地表及行星反射率.应用气象学报, 1994, 5(4):394-401. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940471&flag=1
    张军华, 刘莉, 毛节泰.地基多波段遥感西藏当雄地区气溶胶光学特性.大气科学, 2000, 24(4):549-558. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200004010.htm
    Ialongo I, Casale G R, Siani A M.Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station. Atmospheric Chemistry and Physics, 2008, 8(1):3283-3289. http://www.oalib.com/paper/1366969
    Buchard V, Brogniez C, Auriol F, et al.Comparison of OMI ozone and UV irradiance data with ground-based measurements at two French sites. Atmospheric Chemistry and Physics, 2008, 8(16):4517-4528. DOI: 10.5194/acp-8-4517-2008
    Krotkov N, Bhartia P, Herman J, et al.Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols:1.Cloud-free case. Journal of Geophysical Research:Atmospheres (1984-2012), 1998, 103(D8):8779-8793. http://www.citeulike.org/user/harish/article/1398555
    Torres O, Tanskanen A, Veihelmann B, et al.Aerosols and surface UV products from ozone monitoring instrument observations:An overview. Journal of Geophysical Research:Atmospheres (1984-2012), 2007, 112(D24):177-180. https://www.researchgate.net/publication/233894226_Aerosols_and_surface_UV_products_from_Ozone_Monitoring_Instrument_observations_An_overview
  • Cited by

    Periodical cited type(5)

    1. 陈熠,郭淑政,张田甜,林伟立. 西藏城市大气臭氧质量浓度变化及其影响. 应用气象学报. 2024(06): 715-724 . 本站查看
    2. 郑向东,程海轩. 南极中山站太阳紫外辐射测值比较. 应用气象学报. 2020(04): 482-493 . 本站查看
    3. 赵地,诺桑,措加旺姆,晋亚铭,段杰,周毅. 西藏拉萨地区太阳紫外辐射观测. 大气与环境光学学报. 2018(02): 81-87 .
    4. 刘梦琪,郑向东,赵春生. 夏季西藏4个站点大气向下长波辐射观测分析. 应用气象学报. 2018(05): 596-608 . 本站查看
    5. 徐金波,尹雪梅,李明美,张丹东. 攀枝花紫外线辐射强度变化及影响因子. 农业灾害研究. 2017(03): 1-3+53 .

    Other cited types(3)

Catalog

    Figures(6)  /  Tables(3)

    Article views3890 PDF downloads1451 Cited by: 8
    • Received : 2014-12-09
    • Accepted : 2015-03-29
    • Published : 2015-07-30

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return