Fu Guiqin, You Fengchun, Cao Xin, et al. Application and verification of accumulated temperature effects on daily peak load and daily valley load of power. J Appl Meteor Sci, 2015, 26(4): 492-499. DOI:  10.11898/1001-7313.20150411.
Citation: Fu Guiqin, You Fengchun, Cao Xin, et al. Application and verification of accumulated temperature effects on daily peak load and daily valley load of power. J Appl Meteor Sci, 2015, 26(4): 492-499. DOI:  10.11898/1001-7313.20150411.

Application and Verification of Accumulated Temperature Effects on Daily Peak Load and Daily Valley Load of Power

DOI: 10.11898/1001-7313.20150411
  • Received Date: 2014-10-20
  • Rev Recd Date: 2015-02-09
  • Publish Date: 2015-07-31
  • In order to meet needs for electric power of meteorological service, an analysis is made on the correlation between meteorological elements and electrical loads of electric network in Hebei Province. The meteorological data and electrical load data from May to September during 2001-2010 are used, and they are divided into sunny hot weather and muggy weather. Compared to the sunny hot weather, it shows that the daily peak load and daily valley load are increased significantly in muggy weather lasting three days or more. When daily maximum temperature reaches 32℃, daily peak load of power increase rapidly in Hebei Province, and 32, 35℃ and 38℃ of daily maximum temperature are three sensitive points for daily peak load of power to air temperature variation. During periods with daily maximum temperature more than or equal to 35℃, the daily peak load of power varies greatly according to the air temperature. When daily maximum temperature exceeds 38℃, considering 1℃ rising of daily maximum temperature, the daily peak load of power would increase 9.4%, and the air-conditioning cooling load of power would reach 50% of the daily peak load. When daily minimum temperature reaches 25℃, daily valley load of power increases rapidly, and 25℃ of daily minimum temperature is the sensitive point of daily valley load of power to air temperature variation. Introducing accumulated temperature effect as forecast factor, a meteorological electricity prediction model is established by using the multiple regression method, which can predict the peak and valley of meteorological electricity loads. The model is validated using historic data from 2011 to 2013, the average relative error of daily peak load is 4.8%, and that of the daily valley load is 3.5%, showing good prediction accuracy. The proposed model has reference significance for electric power dispatching.
  • Fig. 1  The annual average curve of daily maximum temperature, daily minimum temperature and daily peak load, daily valley load of power from May to September during 2001-2010

    Fig. 2  The monthly average curve of daily maximum temperature, daily minimum temperature and daily peak load, daily valley load of power from May to September during 2001-2010

    Fig. 3  The contrast curve between forecast and real value of daily peak load and daily valley load from May to September during 2011-2013

    Table  1  Variations of daily peak load and daily valley load of power in sunny hot weather from May to September during 2001-2010

    时段 日峰负荷增量/(105 kW) 日谷负荷增量/(105 kW) 过程最高气温/℃ 过程最低气温/℃
    2001-07-11—13 102.8 29.9 37.1 23.5
    2002-05-30—06-01 62.2 19.4 37.0 20.1
    2002-06-03—07 62.0 14.1 38.1 22.0
    2003-06-17—20 75.0 24.8 36.8 19.6
    2004-06-09—11 53.1 41.4 37.5 19.7
    2005-06-11—17 42.1 59.9 37.3 21.8
    2005-06-19—21 107.1 85.7 40.3 24.1
    2005-07-04—09 110.7 7.3 37.6 24.1
    2007-06-06—10 91.9 31.0 37.8 22.0
    2009-06-23—07-04 123.6 58.3 40.4 21.9
    2010-06-27—29 67.5 27.5 38.1 23.1
    平均 81.6 36.3 38.0 22.0
    DownLoad: Download CSV

    Table  2  Variations of daily peak load and daily valley load of power in muggy weather from May to September during 2001-2010

    时段 日峰负荷增量/(105 kW) 日谷负荷增量/(105 kW) 过程最高气温/℃ 过程最低气温/℃
    2002-07-10—15 80.2 61.2 41.6 25.7
    2002-07-30—08-04 81.1 38.6 36.2 24.8
    2005-07-19—21 65.3 53.9 35.9 25.4
    2005-08-11—15 120.7 66.5 35.1 25.8
    2006-07-12—14 44.9 44.1 34.1 24.4
    2006-08-08—13 26.5 39.4 34.8 25.0
    2008-08-07—09 35.7 6.7 33.8 24.8
    2009-07-20—22 184.6 142.2 33.9 26.0
    2010-07-03—05 179.1 101.1 39.5 25.0
    2010-07-22—31 123.6 37.3 25.4
    平均 94.2 61.5 36.2 25.2
    DownLoad: Download CSV

    Table  3  Increment of meteorological variations of daily peak power with 1℃ increment of daily maximum temperature

    Tmax/℃ K/% M/%
    [27, 28) -18.8
    [28, 29) -10.4 8.4
    [29, 30) -9.3 1.1
    [30, 31) 0.5 9.8
    [31, 32) 3.3 2.8
    [32, 33) 18.2 14.9
    [33, 34) 19.6 1.4
    [34, 35) 21.6 2.0
    [35, 36) 27.6 6.0
    [36, 37) 30.9 3.3
    [37, 38) 34.5 3.6
    [38, 39) 43.9 9.4
    [39, 45*) 48.2 4.3
    注:*历史记录中南电网区域夏季极端最高气温为44.4℃。
    DownLoad: Download CSV

    Table  4  Increment of meteorological variations of daily valley load of power with 1℃ increment daily minimum temperature

    Tmin/℃ K/% M/%
    [20, 21) -7.0
    [21, 22) -4.3 2.7
    [22, 23) 5.0 9.3
    [23, 24) 0.1 -4.9
    [24, 25) 2.7 2.6
    [25, 26) 17.3 14.6
    [26, 27) 20.9 3.6
    [27, 30*) 20.5 -0.4
    注:*历史记录中南电网区域夏季日最低气温最大值为30.0℃。
    DownLoad: Download CSV

    Table  5  The correlation between power load and meteorological elements from May to September during 2001-2010

    气象要素 Fmax Fmin
    T 0.551 0.561
    Tmax 0.542 0.535
    Tmin 0.426 0.431
    Bmax 0.430
    Bmin 0.353
    f -0.361 -0.338
    R -0.228 -0.183
    DownLoad: Download CSV
  • [1]
    胡江林, 陈正洪, 洪斌, 等.基于气象因子的华中电网负荷预测方法研究.应用气象学报, 2002, 13(5):600-608. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020577&flag=1
    [2]
    罗慧, 巢清尘, 李奇, 等.气象要素在电力负荷预测中的应用.气象, 2005, 31(6):15-18. doi:  10.7519/j.issn.1000-0526.2005.06.003
    [3]
    付桂琴, 李运宗.气象条件对电力负荷的影响分析.气象科技, 2008, 36(6):795-800. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200806026.htm
    [4]
    吴向阳, 张海东.北京市气温对电力负荷影响的计量经济分析.应用气象学报, 2008, 19(5):531-538. doi:  10.11898/1001-7313.20080503
    [5]
    张小玲, 王迎春.北京夏季用电量与气象条件的关系及预报.气象, 2002, 28(2):17-21. doi:  10.7519/j.issn.1000-0526.2002.02.004
    [6]
    郑贤, 唐伍斌, 贝宇, 等.桂林电网日负荷与气象因素的关系及其预测.气象, 2008, 34(10):96-101. doi:  10.7519/j.issn.1000-0526.2008.10.013
    [7]
    陈正洪, 洪斌.华中电网四省日用电量与气温关系的评估.地理学报, 2000, 55(增刊Ⅰ):34-38. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2000S1006.htm
    [8]
    付桂琴, 时青格, 刘建文.夏季高温对电力负荷的影响.电网技术, 2010, 34(增刊Ⅱ):506-509. http://www.cnki.com.cn/Article/CJFDTOTAL-JSDJ200402004.htm
    [9]
    Douglas M L C, Hency E W.Modeling the impact of summer temperatures on nationalelectrlcity consumption.J Appl Meteorol, 1981, 20(12):1415-1419. doi:  10.1175/1520-0450(1981)020<1415:MTIOST>2.0.CO;2
    [10]
    段海来, 千怀遂.广州城市电力消费对气候变化的响应.应用气象学报, 2009, 20(1):80-87. doi:  10.11898/1001-7313.20090110
    [11]
    张海东, 孙照渤, 郑艳, 等.温度变化对南京城市电力负荷的影响.大气科学学报, 2009, 32(4):536-542. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200904011.htm
    [12]
    李雪铭, 葛庆龙, 周连义, 等.近二十年全球气温变化的居民用电量响应——以大连市为例.干旱区资源与环境, 2003, 17(5):54-58. http://www.cnki.com.cn/Article/CJFDTOTAL-GHZH200305010.htm
    [13]
    张自银, 马京津, 雷杨娜.北京市夏季电力负荷逐日变率与气象因子关系.应用气象学报, 2011, 22(6):760-765. doi:  10.11898/1001-7313.20110615
    [14]
    贺芳芳, 史军.上海地区夏季气温变化对用电负荷的影响.长江流域资源与环境, 2011, 20(12):1462-1467. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201112007.htm
    [15]
    阎访, 陈静, 车少静.石家庄夏季用电量对天气的响应及其预测模型.甘肃气象, 2009, 27(3):282-287. http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200903015.htm
    [16]
    罗森波, 纪忠萍, 马讉华, 等.2002—2004年广东电力负荷的变化及预测.热带气象学报, 2007, 23(2):153-161. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200702006.htm
    [17]
    贺芳芳, 徐家良, 周伟东, 等.上海地区高温期气象条件对用电影响的评估.高原气象, 2008, 27(增刊Ⅰ):210-217. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX2008S1028.htm
    [18]
    钟利华, 周绍毅, 邓英姿, 等.广西近年高温干旱气象灾害及对电力供求的影响.灾害学, 2012, 22(3):81-84. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200711011114.htm
    [19]
    陈辉, 黄卓, 田华, 等.高温中暑气象等级评定方法.应用气象学报, 2009, 20(4):451-457. doi:  10.11898/1001-7313.20090409
    [20]
    黄卓, 陈辉, 田华.高温热浪指标研究.气象, 2011, 37(3):345-351. doi:  10.7519/j.issn.1000-0526.2011.03.013
    [21]
    郭建平, 田志会, 张娟娟.东北地区玉米热量指数的预测模型研究.应用气象学报, 2003, 14(5):626-633. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030577&flag=1
    [22]
    刘红亚, 曹亮.上海市电力负荷与气象因子关系及精细化预报.应用气象学报, 2013, 24(4):455-463. doi:  10.11898/1001-7313.20130408
  • 加载中
  • -->

Catalog

    Figures(3)  / Tables(5)

    Article views (3012) PDF downloads(781) Cited by()
    • Received : 2014-10-20
    • Accepted : 2015-02-09
    • Published : 2015-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint