Li Shuangshuang, Yang Saini, Zhang Donghai, et al. Spatiotemporal variability of heat waves in Beijing-Tianjin-Hebei Region and influencing factors in recent 54 years. J Appl Meteor Sci, 2015, 26(5): 545-554. DOI:  10.11898/1001-7313.20150504.
Citation: Li Shuangshuang, Yang Saini, Zhang Donghai, et al. Spatiotemporal variability of heat waves in Beijing-Tianjin-Hebei Region and influencing factors in recent 54 years. J Appl Meteor Sci, 2015, 26(5): 545-554. DOI:  10.11898/1001-7313.20150504.

Spatiotemporal Variability of Heat Waves in Beijing-Tianjin-Hebei Region and Influencing Factors in Recent 54 Years

DOI: 10.11898/1001-7313.20150504
  • Received Date: 2015-01-05
  • Rev Recd Date: 2015-05-04
  • Publish Date: 2015-09-30
  • It indicates that hot summers will become more frequent in eastern China in the future. The region will face a great risk in the absence of any adaptation measures taken towards reducing its vulnerability to effects of extreme heat. Beijing-Tianjin-Hebei Region is identified as the biggest metropolitan in northern China. Rapid urbanization and the recent frequent occurrence of hot summers in the region raises questions about influencing factors at the regional scale and the spatiotemporal variability of heat waves. Using the newly developed Heatwave Index (HI), a statistical analysis is conducted on the temporal and spatial distribution characteristics of heat waves in Beijing-Tianjin-Hebei Region over a period from 1960 to 2013. More specifically, based on the history of relocations, the heat wave trends between Beijing and Fengning is compared to investigate the influence of urbanization, and also analyse the relationship between atmospheric circulation anomalies and observed heat wave trends. It shows that based on variations in heat wave trends, two distinct phases are identified in Beijing-Tianjin-Hebei Region. Owing to some abrupt changes in the mid-1970s, the frequency of heat waves decrease from 1960 to 1973, and then increase from 1974 to 2013. Heat waves show a decreasing trend in the southern part and an increasing trend in the northern part of Beijing-Tianjin-Hebei Region. A significant increasing trend is found in the northern and western biological conservation area, and decreasing trend in south-eastern plains. At the regional scale, urbanization and relocations affect the occurrence of slight to moderate rather than extreme heat waves. In the period of global warming and rapid urbanization, the frequency of heat waves in Beijing is higher than that of Fengning. In recent global warming hiatus, the frequency of heat waves in Beijing is lower than Fengning. Driving factors behind temporal and spatial patterns are deemed complicated. The inter-decadal variations are significantly and closely related to the offsetting of western Pacific subtropical high (WPSH) ridge and the anomalous anticyclone over the Tibetan Plateau (TPAI) in summer. In other words, there is a positive correlation between the number of heat wave days and WPSH and TPAI. Furthermore, the probability of a summer with a mega-heat wave would increase with the anomalies in WPSH and TPAI.

  • Fig. 1  Climate regionalization and the distribution of meteorological stations in the study area

    Fig. 2  Variations of slight heat waves, moderate heat waves, severe heat waves and total frequency of heat waves in Beijing-Tianjin-Hebei Region during 1960-2013

    Fig. 3  Trend of monthly heat waves in Beijing-Tianjin-Hebei Region during 1960-2013

    Fig. 4  21-year sliding correlation coefficient of slight heat waves, moderate heat waves, severe heat waves and total frequency of heat waves between Beijing and Fengning during 1960-2013

    (the dashed line denotes the level of 0.01)

    Fig. 5  The change trend of slight heat waves, moderate heat waves, severe heat waves and total frequency of heat waves difference between Beijing and Fengning during 1960-2013

    Fig. 6  Correlation analysis of atmospheric oscillation and heat waves on different time scales in Beijing-Tianjin-Hebei Region

    Table  1  Heat waves regressed against atmospheric oscillation in Beijing-Tianjin-Hebei Region

    环流因子bT膨胀系数
    东亚夏季风0.1831.4301.099
    北大西洋涛动-0.2411.6201.182
    印度洋偶极子0.270-1.9471.061
    青藏高原高空反气旋环流0.3332.1791.208
    西太平洋副热带高压北界0.2002.4731.329
    注:b为多元线性回归系数,Tt检验值。
    DownLoad: Download CSV
  • [1]
    IPCC.Climate change 2013:The Physical Science Basis, the Summary for Policymakers of the Working Group Ⅰ Contribution to the Fifth Assessment Report.New York:Cambridge University Press, 2013.
    [2]
    第二次气候变化国家评估报告编写委员会.第二次气候变化国家评估报告.北京:科学出版社, 2011.
    [3]
    周鑫, 李清泉, 孙秀博, 等.BCC_CSM1.1模式对我国气温的模拟和预估.应用气象学报, 2014, 25(1):95-106. doi:  10.11898/1001-7313.20140110
    [4]
    Coumou D, Robinson A, Rahmstorf S.Global increase in record-breaking monthly-mean temperatures.Climatic Change, 2013, 118:771-782. doi:  10.1007/s10584-012-0668-1
    [5]
    Coumou D, Robinson A.Historic and future increase in the global land area affected by monthly heat extremes.Environmental Research Letters, 2013, 8:1-6. http://adsabs.harvard.edu/abs/2013ERL.....8c4018C
    [6]
    Barriopedro D, Fischer E M, Luterbacher J, et al.The hot summer of 2010:Redrawing the temperature record map of Europe.Science, 2011, 6026:220-224. http://www.sciencemag.org/content/early/2011/03/16/science.1201224?explicitversion=true&cited-by=yes&legid=sci;science.1201224v1
    [7]
    Shaposhnikov D, Revich B, Bellander T, et al.Mortality related to air pollution with the Moscow heat wave and wildfire of 2010.Epidemiology, 2014, 3:359-364. http://journals.lww.com/epidem/pages/imagegallery.aspx?year=2014&issue=05000&article=00006
    [8]
    Tang Q H, Zhang X J, Francis J A.Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere.Nature Climate Change, 2014, 4:45-50. http://or.nsfc.gov.cn/handle/00001903-5/265133
    [9]
    Sun Y, Zhang X B, Zwlers F W, et al.Rapid increase in the risk of extreme summer heat in Eastern China.Nature Climate Change, 2014, doi: 10.1038/nclimate2410.
    [10]
    IPCC.Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change.New York:Cambridge University Press, 2012.
    [11]
    张勇, 曹丽娟, 许吟隆, 等.未来我国极端温度事件变化情景分析.应用气象学报, 2008, 19(6):655-660. doi:  10.11898/1001-7313.20080603
    [12]
    石英, 高学杰, 吴佳, 等.华北地区未来气候变化的高分辨率数值模拟, 应用气象学报, 2010, 21(5):580-589. doi:  10.11898/1001-7313.20100507
    [13]
    杨萍, 刘伟东, 王启光, 等.近40年我国极端温度变化趋势和季节特征.应用气象学报, 2010, 21(1):29-36. doi:  10.11898/1001-7313.20100104
    [14]
    刘金祥. 可持续发展理念视角下的我国城市化. 中国科学报, 2012-09-03(3).
    [15]
    饶沛. 北京城区用水量超290万方——逼近百年来极值. 新京报, 2014-05-25.
    [16]
    Wang M N, Yan X D, Liu J Y, et al.The contribution of urbanization to recent extreme heat events and a potential mitigation strategy in the Beijing-Tianjin-Hebei metropolitan area.Theoretical and Applied Climatology, 2013, 114(3):407-416. https://www.researchgate.net/profile/Xiaodong_Yan/publication/257449727_The_contribution_of_urbanization_to_recent_extreme_heat_events_and_a_potential_mitigation_strategy_in_the_Beijing-Tianjin-Hebei_metropolitan_area/links/543f55f40cf21c84f23cd023.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
    [17]
    张国华, 张江涛, 金晓青, 等.京津冀城市高温的气候特征及城市化效应.生态环境学报, 2012, 21(3):455-463. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201203011.htm
    [18]
    施洪波.1960-2008年京津冀地区夏季高温日数的变化趋势分析.气象, 2011, 37(10):1277-1282. doi:  10.7519/j.issn.1000-0526.2011.10.011
    [19]
    胡姝婧, 胡德勇, 李小娟, 等.京津冀都市圈热环境空间格局遥感分析.国土资源遥感, 2009, 12(3):94-99. doi:  10.6046/gtzyyg.2009.03.19
    [20]
    史印山, 谷永利, 林艳.京津冀高温天气的时空分布及环流特征分析.气象, 2009, 35(6):63-69. doi:  10.7519/j.issn.1000-0526.2009.06.008
    [21]
    樊杰.京津冀都市圈区域综合规划研究.北京:科学出版社, 2008.
    [22]
    苏剑勤.河北气候.北京:气象出版社, 1996.
    [23]
    黄卓, 陈辉, 田华.高温热浪指标研究.气象, 2011, 37(3):345-351. doi:  10.7519/j.issn.1000-0526.2011.03.013
    [24]
    Tom E C, Bosen J R.The discomfort index.Wearherwise, 1959, 12:59-60. doi:  10.1007%2FBF02187617
    [25]
    叶殿秀, 尹继福, 陈正洪, 等.1961—2010年我国夏季高温热浪的时空变化特征.气候变化研究进展, 2013, 9(1):15-20. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201301004.htm
    [26]
    潘竟虎, 韩文超.近20a中国省会及以上城市空间形态演.自然资源学报, 2013, 28(3):470-478. doi:  10.11849/zrzyxb.2013.03.012
    [27]
    郑祚芳, 高华, 王在文, 等.城市化对北京夏季极端高温影响的数值研究.生态环境学报, 2012, 21(10):1689-1694. doi:  10.3969/j.issn.1674-5906.2012.10.010
    [28]
    窦晶晶, 王迎春, 苗世光.北京城区近地面比湿和风场时空分布特征.应用气象学报, 2014, 25(5):559-569. doi:  10.11898/1001-7313.20140505
    [29]
    严中伟, 李珍, 夏江江.气候序列的均一化——定量评估气候变化的基础.中国科学:地球科学, 2014, 44(10):2101-2111. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201410001.htm
    [30]
    王佳丽, 张人禾, 王迎春.北京降水特征及北京市观象台降水资料代表性.应用气象学报, 2012, 23(3):265-273. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120302&flag=1
    [31]
    Wu G X, Duan A M, Liu Y M, et al.Tibetan plateau climate dynamics:Recent research progress and outlook.National Science Review, 2015, 2:100-116. doi:  10.1093/nsr/nwu045
    [32]
    Zhao L, Lee X H, Smith R B, et al.Strong contributions of local background climate to urban heat islands.Nature, 2014, 511(7508):216-219. doi:  10.1038/nature13462
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(1)

    Article views (4040) PDF downloads(1021) Cited by()
    • Received : 2015-01-05
    • Accepted : 2015-05-04
    • Published : 2015-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint