Xu Jing, Ma Zhiqiang, Zhao Xiujuan, et al. The effect of different planetary boundary layer schemes on the simulation of near surface O3 vertical distribution. J Appl Meteor Sci, 2015, 26(5): 567-577. DOI:  10.11898/1001-7313.20150506.
Citation: Xu Jing, Ma Zhiqiang, Zhao Xiujuan, et al. The effect of different planetary boundary layer schemes on the simulation of near surface O3 vertical distribution. J Appl Meteor Sci, 2015, 26(5): 567-577. DOI:  10.11898/1001-7313.20150506.

The Effect of Different Planetary Boundary Layer Schemes on the Simulation of Near Surface O3 Vertical Distribution

DOI: 10.11898/1001-7313.20150506
  • Received Date: 2015-01-09
  • Rev Recd Date: 2015-05-25
  • Publish Date: 2015-09-30
  • Located at the base of the troposphere and affected strongly by ground surface, the planetary boundary layer (PBL) is the main passage of air-land interaction and air pollution. The PBL affects the momentum and heat exchange between the ground and atmosphere through the surface force and turbulence transport. The concentration of pollutants on the ground depends on the vertical mixing state of the atmosphere. Thus, the boundary layer parameterization scheme is not only the important part of numerical model for weather forecast, but also the important foundation of air pollution numerical model. A variety of boundary layer parameterization schemes of physical process are developed, which have different effects on the ground meteorological field and pollutant diffusion. To further understand how the boundary layer processes affect the mixing and transport of air pollutants, a sensitivity experiment is designed and the WRF-Chem model with different PBL schemes (MYJ, YSU and ACM2) is utilized to simulate the PBL structures and O3 vertical distributions on a cloudless and steady day (26-27 Aug 2013). Simulations of temperature field and wind speed field using different PBL schemes are compared to observations. The analysis focuses on the difference of simulations of residual layer formation at night and O3 vertical distribution after sunrise using different PBL schemes. Simulations are compared with the radiosonde data of ozone at Gucheng Station. Results show that the regional distribution characteristics and vertical structures of the temperature and wind speed can be well simulated by all these three PBL parameterization schemes, but the simulation of the ground temperature and wind speed are generally on the high side. The nighttime boundary layer height simulated by MYJ scheme is much higher than those simulated by YSU and ACM2 schemes, leading to the difference in near surface pollutants concentration. In the evolution process of the boundary layer structure from stable state in nighttime to slightly disturbance state after sunrise, the vertical temperature and wind structures simulated by YSU and ACM2 schemes are more consistent with observations. Simulations on effects of boundary layer process upon O3 vertical distribution using YSU and ACM2 schemes also have obvious advantages over MYJ scheme. It should be noted that the simulation is only on a clear and steady weather case, and for complex weather conditions, effects of boundary layer schemes need further verification.
  • Fig. 1  Spatial coverage of the WRF-Chem simulation and the location of monitoring stations

    Fig. 2  Comparison of the near-surface temperature at 0000 BT and 1500 BT on 27 Aug 2013 simulated by different PBL schemes with observation

    (simulated and observed values are indicated by shaded base graphics and shaded circles, respectively)

    Fig. 3  Comparison of temperature simulated by different PBL schemes with observation at Gucheng Station in Aug 2013

    Fig. 4  Comparison of the near-surface wind speed at 0000 BT and 1500 BT on 27 Aug 2013 simulated by different PBL schemes with observation

    (simulated and observed values are indicated by shaded base graphics and shaded circles, respectively)

    Fig. 5  Comparison of the diurnal change of near-surface wind speed simulated by different PBL schemes with observation at Gucheng Station in Aug 2013

    Fig. 6  Comparison of temperature and wind speed profiles simulated by different PBL schemes with observations at Gucheng Station in Aug 2013

    Fig. 7  Comparison of the vertical distribution of ozone concentrations simulated by different PBL schemes with observations at Gucheng Station in Aug 2013

    Fig. 8  Variation of planetary boundary layer height and O3 vertical distributions simulated by MYJ, YSU and ACM2 schemes at Gucheng Station in Aug 2013

  • [1]
    Tran H N Q, Molders N.Investigations on meteorological conditions for elevated PM2.5 in Fairbanks, Alaska.Atmospheric Research, 2011, 99(1):39-49. doi:  10.1016/j.atmosres.2010.08.028
    [2]
    陈炯, 王建捷.北京地区夏季边界层结构日变化的高分辨率模拟对比.应用气象学报, 2006, 17(4):403-411. doi:  10.11898/1001-7313.20060403
    [3]
    刘梦娟, 陈敏.BJ-RUC系统对北京夏季边界层的预报性能评估.应用气象学报, 2014, 25(2):212-221. doi:  10.11898/1001-7313.20140211
    [4]
    陈炯, 王建捷.边界层参数化方案对降水预报的影响.应用气象学报, 2006, 17(增刊): 11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201619071.htm
    [5]
    韩茜, 魏文寿, 刘明哲, 等.乌鲁木齐降雪与非降雪天气边界层结构变化特征.应用气象学报, 2011, 22(3): 292-301. doi:  10.11898/1001-7313.20110305
    [6]
    刘煜, 周秀骥, 李维亮.对流层臭氧的数值模拟实验.应用气象学报, 1990, 1(1): 45-56. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19900109&flag=1
    [7]
    李乐泉, 周明煜, 李兴生.夜间城市大气边界层和气溶胶的相互作用.应用气象学报, 1992, 3(1):32-41. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920110&flag=1
    [8]
    Hong S Y, Pan H L.Nonlocal boundary layer vertical diffusion in a mediumrange forecast model.Mon Wea Rev, 1996, 124:2322-2339. doi:  10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
    [9]
    Pleim J E, Chang J S.A non-local closure model for vertical mixing in the convective boundary layer.Atmos Environ, 1992, 26A:965-981. https://www.researchgate.net/publication/222024000_A_non-local_closure_model_for_vertical_mixing_in_the_convective_boundary_layer
    [10]
    Gayno G.Development of a Higher-order, Fog-producing Boundary Layer Model Suitable for Use in Numerical Weather Prediction.The Pennsylvania State University, 1994:1-104. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.453.5218
    [11]
    杨贵成.WRF-Chem中沙尘天气过程对模式分辨率及边界层方案的敏感性试验.安徽农业科学, 2012, 40(6):3462-3466. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201206092.htm
    [12]
    Cheng F Y, Chin S C, Liu T H.The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area.Atmos Environ, 2012, 54:714-727. doi:  10.1016/j.atmosenv.2012.01.029
    [13]
    王颖, 张镭, 胡菊, 等.WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析.高原气象, 2010, 29(6):1397-1407. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201006005.htm
    [14]
    Hu X M, Klein P M, Xue M.Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments.J Geophys Res Atmos, 2012, 118:1-16. https://www.researchgate.net/publication/260333592_Evaluation_of_the_updated_YSU_planetary_boundary_layer_scheme_within_WRF_for_wind_resource_and_air_quality_assessments
    [15]
    Neu U, Kunzle T, Wanner H.On the relation between ozone storage in the residual layer and daily variation in near-surface ozone concentration-a case study.Boundary-Layer Meteorology, 1994, 69:221-247. doi:  10.1007/BF00708857
    [16]
    Mebust M R, Eder B K, Binkowski F S, et al.Models-3 community multiscale air quality (CMAQ) model aerosol component-2.Model evaluation.J Geophys Res, 2003, 108(D6):4184, doi: 10.1029/2001JD001410.
    [17]
    Mao Q, Gautney L L, Cook T M, et al.Numerical experiments on MM5-CMAQ sensitivityto various PBL schemes.Atmos Environ, 2006, 40(17):3092-3110, doi: 10.1016/j.atmosenv.2005.12.055.
    [18]
    Herwehe J A, Otte T L, Mathur R, et al.Diagnostic analysis of ozone concentrations simulated by two regional-scale air quality models.Atmos Environ, 2011, 45(33):5957-5969, doi: 10.1016/j.atmosenv.2011.08.011.
    [19]
    Hu X M, Ma Z Q, Lin W L.Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain:A case study.Science of the Total Environment, 2014, 499:228-237. doi:  10.1016/j.scitotenv.2014.08.053
    [20]
    Ma Z Q, Zhang X L, Xu J, et al.Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn.Journal of Environmental Sciences, 2011, 23(8):1316-1324. doi:  10.1016/S1001-0742(10)60557-8
    [21]
    Zaveri R A, Peters L K. A new lumped structure photochemical mechanism for large-scale applications. J Geophys Res, 1999, 104:30387-30415. doi:  10.1029/1999JD900876
    [22]
    Wild O, Zhu X, Prather M J. Fast-J:Accurate simulation of inand below-cloud photolysis in tropospheric chemical model.J Atmos Chem, 2000, 37:245-282. doi:  10.1023/A:1006415919030
    [23]
    Zaveri R A, Easter R C, Wexler A S. A computationally efficient multicomponent equilibrium solver for aerosols (MESA). J Geophys Res, 2005, 110, D24203, doi: 10.1029/2004JD005618.
    [24]
    Kain J S.The Kain-Fritsch convective parameterization:An update.J Appl Meteor, 2004, 43(1):170-181. doi:  10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
    [25]
    Chem S H, Sun W Y.One-dimensional time dependent cloud model.J Meteor Soc Japan, 2002, 80(1):99-118. doi:  10.2151/jmsj.80.99
    [26]
    Mlawer E J, Taubman S T, Brown P D, et al.RRTM, a validated correlated-K model for the longwave.J Geophys Res, 1997, 102(D14):16663-16682. doi:  10.1029/97JD00237
    [27]
    Dudhia J.Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two dimensional model.Journal of the Atmospheric Sciences, 1989, 46(20):3077-3107. doi:  10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
    [28]
    Janjic Z I.Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model.NOAA/NWS/NCEP Office Note 437, 2002:61. https://www.researchgate.net/publication/228749162_Nonsingular_Implementation_of_the_Mellor-Yamada_Level_25_Scheme_in_the_NCEP_Meso_Model
    [29]
    Brljaars A C M.The parameterization of the surface fluxes in large-scale models under free convection.Quart J Roy Meteor Soc, 1995, 121(522):255-270. doi:  10.1002/(ISSN)1477-870X
    [30]
    Chen F, Duhhia J.Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system.Part Ⅰ:Model implementation and sensitivity.Mon Wea Rev, 2001, 129(4):569-585. doi:  10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
    [31]
    Zhang Q, Streets D G, Carmichael G R, et al.Asian emissions in 2006 for the NASA INTEX-B mission.Atmos Chem Phys, 2009, 9:5131-5153. doi:  10.5194/acp-9-5131-2009
    [32]
    Guenther A, Karl T, Harley P, et al.Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature).Atmos Chem Phys, 2006, 6:3181-3210. doi:  10.5194/acp-6-3181-2006
    [33]
    Hong S Y, Noh Y, Dudhia J.Anew vertical diffusion package with explicit treatment of entrainment processes.Mon Wea Rev, 2006, 134:2318-2341. doi:  10.1175/MWR3199.1
    [34]
    Mellor G L, Yamada T.Development of a turbulence closure model for geophysical fluid problems.Reviews of Geophysics, 1982, 20(4):851-875. doi:  10.1029/RG020i004p00851
  • 加载中
  • -->

Catalog

    Figures(8)

    Article views (4912) PDF downloads(1214) Cited by()
    • Received : 2015-01-09
    • Accepted : 2015-05-25
    • Published : 2015-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint