Zhao Ruijin, Liu Liping, Zhang Jin. The quality control method of erroneous radar echo data generated by hardware fault. J Appl Meteor Sci, 2015, 26(5): 578-589. DOI:  10.11898/1001-7313.20150507.
Citation: Zhao Ruijin, Liu Liping, Zhang Jin. The quality control method of erroneous radar echo data generated by hardware fault. J Appl Meteor Sci, 2015, 26(5): 578-589. DOI:  10.11898/1001-7313.20150507.

The Quality Control Method of Erroneous Radar Echo Data Generated by Hardware Fault

DOI: 10.11898/1001-7313.20150507
  • Received Date: 2014-10-09
  • Rev Recd Date: 2015-05-15
  • Publish Date: 2015-09-30
  • Radar hardware fault affects data quality directly. Erroneous data not only affect local forecaster analyzing weather, but also have serious influence on the running of national operation system. So far, study on radar data quality control mainly aims at non-meteorological echoes, such as ground clutter, sea clutter, electromagnetic interference and so on. There isn't enough effective quality control method for erroneous data generated by hardware fault. Through analysis on the integrity of base data, position information and characteristic of hardware fault echoes, the correlation between erroneous data and fault category, and effects of different fault on data and echoes are studied. A quality control method is provided.Erroneous data generated by radar hardware fault affect integrity of base data, position and intensity information of echoes. There is some difference among different type hardware fault or part of radar. Transmitter and receiver system fault mainly affect the intensity information. Servo system fault mainly affect position information and the integrity of date. Through checking base data integrity and echoes position information, fault data generated by servo system can be identified.The radar intensity information affect image feature such as shape, range and intensity. The error intensity information data generated by radar hardware fault can be controlled through fuzzy-logical principle, and identified through comparing parameters such as radar echoes area, mean absolute difference of intensity, the degree of intensity change, and image correlation coefficient with neighboring normal data. There is some difference between different parts of radar or different kinds of hardware fault. It is impossible to identify all erroneous data only by one method. In the actual work, it is necessary to combine status and alarm information, and apply multiple means to check radar data step by step. Only in this way, erroneous data generated by hardware fault can be effectively and comprehensively controlled.A test on erroneous data generated by hardware fault of Shijiazhuang radar site from 2004 to 2013 is carried out, and the identification ratio is above 90%. It is supplement for the existing quality control methods which mainly aim at non-meteorological echoes when radar operate normally. The proposed algorithm is mainly based on the intensity and position information, and the quality control method on velocity and spectral width error generated by hardware fault should be further studied.
  • Fig. 1  Cases of radar echoes position, range and intensity change

    Fig. 2  Echo shape change

    Fig. 3  Probability distribution of , r for normal radar data

    Fig. 4  Probability distribution of , r for erroneous radar data

    Fig. 5  Membership functions of each identification index

    Fig. 6  Reflectivity of Shijiazhuang radar site at 044200 UTC 6 Apr 2013

    Fig. 7  Cake shape echo of Shijiazhuang radar site on 20 Apr 2011

    Table  1  Silk shape echo position data at 044200 UTC 6 Apr 2013

    时间方位/(°)仰角/(°)
    04:42:03.36024.740.53
    04:42:03.8836.370.53
    04:42:03.969354.590.53
    04:42:04.40525.970.53
    DownLoad: Download CSV

    Table  2  Correlation parameters of echo position change on 22 Jul 2005

    时间ΔS(≥5 dBZ)ZMAD/dBZSPIN(≥5 dBZ)r
    21T23:27—23:336543.0423490.1492390.882581
    21T23:33—23:3912083.1581460.1535020.873645
    21T23:39—22T00:457523.3072220.1583210.858955
    21T23:45—23:514213.0886780.1462920.865209
    21T23:51—23:589183.0615880.1468840.865149
    21T23:58—22T00:053812.9852290.1436170.869761
    22T00:05—00:117042.8283640.1324090.873409
    22T00:11—00:178002.8436780.1322100.869391
    22T00:17—00:235512.5414920.1168120.886527
    22T00:23—00:298622.6627290.1209960.876078
    22T00:29—00:495439.3054410.3534000.344445
    22T00:49—00:554342.5583390.1175480.886113
    DownLoad: Download CSV

    Table  3  The correlation parameter of image features of adjacent radar data of Shijiazhuang radar site from 1006 UTC to 1042 UTC on 20 Apr 2011

    时间ΔS(≥5 dBZ)ZMAD/dBZSPIN(≥5 dBZ)r
    10:00—10:066190.0823491.3153260.820525
    10:06—10:122380.0813351.2993540.826941
    10:12—10:184900.0816911.3157190.827493
    10:18—10:2474950.23404613.3418180.129576
    10:24—10:3071980.23497013.3083510.144123
    10:30—10:366250.0782791.2596070.841661
    10:36—10:426500.0822041.3260020.823098
    DownLoad: Download CSV

    Table  4  Intensity change from 1018 UTC to 1030 UTC on 20 Apr 2011

    时间方位角/(°)仰角/(°)51~60 km距离库回波强度/dBZ
    51 km52 km53 km54 km55 km56 km57 km58 km59 km60 km
    180.88-2.01.0-0.55.512.52.03.02.01.0-1.5
    10:18181.850.531.54.58.57.59.06.05.52.50.0-0.5
    182.811.00.5-0.56.08.011.58.0-2.02.54.5
    180.8361.059.060.573.564.561.068.571.071.088.0
    10:24181.850.5759.070.068.572.071.563.063.555.074.574.5
    182.8154.067.562.560.068.087.587.567.088.088.0
    180.7510.5114.55.00.510.52.58.05.01.0
    10:30181.670.575.543.52.01.54.04.0-1.53.54.0
    182.643.57.5-1.02.07.03.50.51.53.56.5
    DownLoad: Download CSV

    Table  5  Iidentification result of erroneous radar data (identification threshhold P≥0.6)

    错误数据类型回波形态数据量识别识别率/%
    强度异常饼图,大范围噪点282278.57
    V型缺口,扇状回波42839492.06
    强度异常增强或减弱372772.97
    环状11100
    方位角/仰角异常回波整体方位改变11100
    丝状回波2929100
    范围异常22100
    异常数据总体识别情况52647690.49
    DownLoad: Download CSV
  • [1]
    肖艳姣, 刘黎平, 杨洪平.基于天气雷达网三维拼图的混合反射率因子生成技术.气象学报, 2008, 66(3):470-473. doi:  10.11676/qxxb2008.043
    [2]
    肖现, 王迎春, 陈明轩, 等.基于雷达资料四维变分同化技术对北京地区一次下山突发性增强风暴热动力机制的模拟分析.气象学报, 2013, 71(5):797-816. doi:  10.11676/qxxb2013.077
    [3]
    刘黎平, 吴林林, 杨引明.基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析.气象学报, 2007, 65(2):252-260. doi:  10.11676/qxxb2007.024
    [4]
    江源, 刘黎平, 庄薇.多普勒天气雷达地物回波特征及其识别方法改进.应用气象学报, 2009, 20(2):203-213. doi:  10.11898/1001-7313.20090210
    [5]
    李丰, 刘黎平, 王红艳, 等.S波段多普勒天气雷达非降水气象回波识别.应用气象学报, 2012, 23(2):147-158. doi:  10.11898/1001-7313.20120203
    [6]
    李丰, 刘黎平, 王红艳, 等.C波段多普勒天气雷达地物识别方法.应用气象学报, 2014, 25(2):158-167. doi:  10.11898/1001-7313.20140205
    [7]
    何彩芬, 黄旋旋, 丁烨毅, 等.宁波非气象雷达回波的人工智能识别及滤波.应用气象学报, 2007, 18(6):856-864. doi:  10.11898/1001-7313.200706129
    [8]
    谭学, 刘黎平, 范思睿.新一代天气雷达海浪回波特征分析和识别方法研究.气象学报, 2013, 71(5):962-975. doi:  10.11676/qxxb2013.074
    [9]
    陈忠勇, 蔡宏, 向阿勇, 等.天气雷达探测遭电子干扰分析与解决途径.气象科技, 2012, 40(5):719-722. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201205005.htm
    [10]
    Jungbluth K, Belles J, Schumacher M.Velocity Contamination of WSR-88D and Wind Profiler Data Due to Migrating Birds//The 27th Conference on Radar Meteorology.American Meteorological Society, 1995:666-668. https://www.researchgate.net/publication/234269421_Contamination_of_Wind_Profiler_Data_by_Migrating_Birds_Characteristics_of_Corrupted_Data_and_Potential_Solutions
    [11]
    周红根, 柴秀梅, 胡帆, 等.新一代天气雷达回波异常情况分析.气象, 2008, 34(6):112-115. doi:  10.7519/j.issn.1000-0526.2008.06.017
    [12]
    潘新民, 柴秀梅, 崔柄俭, 等.CINRAD/SB雷达回波强度定标调校方法.应用气象学报, 2010, 21(6):739-746. doi:  10.11898/1001-7313.20100611
    [13]
    胡东明, 刘强, 程元慧, 等.CINRAD/SA天线伺服系统轴角箱多次故障的分析.气象, 2007, 33(10):114-117. doi:  10.7519/j.issn.1000-0526.2007.10.017
    [14]
    赵瑞金, 董保华, 聂恩旺, 等.根据异常回波特征和报警信息判断雷达故障部位.气象, 2013, 39(5):645-652. doi:  10.7519/j.issn.1000-0526.2013.05.013
    [15]
    邵楠, 裴翀, 刘传才, 等.基于图像处理技术自动判别雷达异常产品.气象科技, 2013, 41(6):993-997. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201306004.htm
    [16]
    杨金红, 高玉春, 柴秀梅.新一代天气雷达运行保障能力分析.气象科技, 2014, 42(1):31-37. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201401004.htm
    [17]
    杨传凤, 张璇, 张骞, 等.CINRAD/SA雷达俯仰角码跳闪导致天线异动的故障排除.气象水文海洋仪器, 2011, 28(4): 109-114. http://www.cnki.com.cn/Article/CJFDTOTAL-QXSW201104033.htm
    [18]
    蔡勤, 柴秀梅, 周红根, 等.CINRAD/SA雷达闪码故障的诊断分析.气象, 2011, 37(8):1045-1048. doi:  10.7519/j.issn.1000-0526.2011.08.019
    [19]
    中国气象局. 新一代天气雷达系统功能规格书 (S波段). 2010.
    [20]
    朱永松, 国澄明.基于相关系数的相关匹配算法的研究.信号处理, 2003, 19(6):531-534. http://www.cnki.com.cn/Article/CJFDTOTAL-XXCN200306007.htm
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(5)

    Article views (2615) PDF downloads(760) Cited by()
    • Received : 2014-10-09
    • Accepted : 2015-05-15
    • Published : 2015-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint