Yao Wen, Ma Ying. Evaluation on the random error of second level sounding data. J Appl Meteor Sci, 2015, 26(5): 600-609. DOI:  10.11898/1001-7313.20150509.
Citation: Yao Wen, Ma Ying. Evaluation on the random error of second level sounding data. J Appl Meteor Sci, 2015, 26(5): 600-609. DOI:  10.11898/1001-7313.20150509.

Evaluation on the Random Error of Second Level Sounding Data

DOI: 10.11898/1001-7313.20150509
  • Received Date: 2015-03-04
  • Rev Recd Date: 2015-05-19
  • Publish Date: 2015-09-30
  • With the development of science and technology, the performance of sounding system, including the data acquisition rate, accuracy, reliability and automation are improved significantly. Comparison and statistical methods to estimate various errors are also needed to be improved. Relative system error and random error are concern variables of the sounding information users, errors evaluated by the reasonable method can reflect typical characteristics of error to same extent. So far, there have not a satisfactory standard radiosonde developed as a reference, relative system error and random error are obtained only through direct intercomparison simultaneously. The random error, it is not determined by dual-launching the same type of radiosondes because of the heavy workload. It is mainly used the indirect estimation method, that is the random error of the specify instrument used as a reference, and then the random error of unknown radiosonde is isolated from the variance between reference and unknown radiosondes. But whether the indirect calculation method of random error is suitable for the second level sounding data or not, the further discussion should be adopted. An overview of the random error is explained including the definition and determination method. And then two datasets are used to analyze the effect on the random error by different degree of data smoothing. One is the data of domestic GPS radiosondes comparison experiments in June 2007 and June-July 2008, the other dataset is the 8th WMO radiosonde comparison at Yangjiang China in 2010. The intercomparison analysis shows that the indirect calculation method of random error could not fully be applicable to the second level sounding data, especially for the estimation of random error of wind, temperature in stratospheric and relative humidity in tropospheric. The second level sounding data can detect the more detail caused by the swing of rising balloon, the raw data should be smoothed to reduce the impact of the above. If smoothing degrees of the original data compared are consistent, the indirect calculation method of random errors could be used suitably. The deviation is small, conversely, it might be problematical, which will produce large bias if it exists the difference in smoothing degree of the original data. In the scheme of direct intercomparision, in order to obtain the relative system error and random error of the different types of radiosonde systems, it is best to hang more than one of the same types of radiosonde in the same balloon to contrast synchronously, which can reduce the influence on evaluating the unknown radiosonde random error because of the own error of reference instrument. The more radiosondes of the same type are used, the more valid data could be obtained, the more accurate evaluation of random errors could be obtained.
  • Fig. 1  Standard deviation statistics of different types of radiosondes

    (a) systematic bias and standard deviations of wind speed differences relative to MODEM in 8th WMO Radiosonde Comparison at Yangjiang China, (b) standard deviation of upper-air wind speed of Vaisala RS92 GPS radiosondes in radiosonde comparison in Beijing China

    Fig. 2  Upper-air wind speed profile and standard deviation of three same type of GPS radiosondes by 30 points data smoothing

    (a) W-E and S-N components of wind profile with time, (b) standard deviation of W-E and S-N components of wind by 2 km interval

    Fig. 3  Standard deviation of upper-air wind speed of three same types of GPS radiosondes by different data smoothing methods

    Fig. 4  Standard deviation of temperature and relative humidity of Vaisala RS92 GPS radiosondes by using different degree data smoothing methods

    Fig. 5  Comparison of standard deviation of temperature and relative humidity of Vaisala RS92 GPS radiosondes by using different data smoothing

    Fig. 6  Effects of different degree data smoothing methods on standard deviation of temperature and relative humidity of Ⅰ′ and Ⅱ′

  • [1]
    黄炳勋.GZZ-7型探空仪热敏电阻温度元件的辐射误差和滞后误差.气象科学技术集刊, 北京:气象出版社, 1985:1-9.
    [2]
    黄炳勋.国内外常规高空观测技术发展近况综述.气象, 2004, 20(5): 3-9. doi:  10.7519/j.issn.1000-0526.2004.05.001
    [3]
    Guo Yatian, Huang Bingxun, Hu Deyun, et al.Correction for Bias of Chinese Upper-air Measurements.WMO, TECO-2002, 12(7), 2002.
    [4]
    徐文静, 郭亚田, 黄炳勋.GTS探空仪碳湿敏元件性能测试数据分析及相对湿度订正.气象科技, 2007, 35(3):423-428. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200703027.htm
    [5]
    姚雯, 马颖, 徐文静.L波段电子探空仪相对湿度误差研究及其应用.应用气象学报, 2008, 19(3):356-361. doi:  10.11898/1001-7313.20080312
    [6]
    姚雯, 马颖, 黄炳勋, 等.利用GPS定位资料分析L波段雷达测风性能.应用气象学报, 2009, 20(2):195-202. doi:  10.11898/1001-7313.20090209
    [7]
    姚雯, 马颖.用GPS定位数据研究L波段雷达-数字探空仪系统的测高误差.气象, 2009, 35(2):88-93. doi:  10.7519/j.issn.1000-0526.2009.02.013
    [8]
    李伟, 赵培涛, 郭启云, 等.国产GPS探空仪国际比对试验结果.应用气象学报, 2011, 22(4):453-462. doi:  10.11898/1001-7313.20110408
    [9]
    邢毅, 张志萍, 曹云昌, 等.RS92型探空仪性能试验与分析.气象科技, 2009, 37(3):336-340. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200903017.htm
    [10]
    李伟, 邢毅, 马舒庆, 等.国产GTS1探空仪与VAISALA公司RS92探空仪对比分析.气象, 2009, 35(10):97-102. doi:  10.7519/j.issn.1000-0526.2009.10.012
    [11]
    马颖, 姚雯, 黄炳勋. 59型探空仪与L波段电子探空仪温度和位势高度记录直接对比分析.应用气象学报, 2010, 21(2):214-220. doi:  10.11898/1001-7313.20100211
    [12]
    马颖, 姚雯, 黄炳勋.用初估场对比中芬探空仪温度和位势高度记录.应用气象学报, 2011, 22(3):336-345. doi:  10.11898/1001-7313.20110310
    [13]
    姚雯, 马颖, 王战, 等.用数值预报初估场间接对比新疆两种型号探空系统.应用气象学报, 2012, 23(2):159-166. doi:  10.11898/1001-7313.20120204
    [14]
    Ivanov A, Kats A, Kurnosenko S, et al.WMO International Radiosondes Comparison, PHASE 3, Final Report, WMO/TD-No.451, 1991.
    [15]
    Oakley T.Report by the Rapporteur on Radiosonde Compatibility Monitoring Part A:WMO Catalogue of Radiosondes and Upper-air Wind Systems in Use by Members.WMO/TD-No.886, 1998.
    [16]
    Reinaldo B da Silveira, Gilberto Fisch, Luiz A T Machado, et al.Executive Summary of the WMO Intercomparison of GPS Radiosondes.WMO/TD-No.1153, 2003.
    [17]
    Zhao Zhiqiang, Huang Bingxun.Some Step of Quality Control of Upper-air Network Data in China.WMO, TECO-2005, P3(4):2005.
    [18]
    Li F.New Developments with Upper-air Sounding in China.WMO/TD-No.1354, Paper 2(1), 2006.
    [19]
    Kurnosenko S, Oakley T.Description and User Guide for the Radiosonde Comparison and Evaluation Software Package.WMO/TD-No.771, 1996.
    [20]
    Nash J, Smout R, Oakley T, et al.The WMO Intercomparison of Radiosonde Systems-Final Report.WMO/TD-No.1303, 2006.
    [21]
    Nash J, Oakley T, Vōmel H, et al.WMO Intercomparison of High Quality Radiosonde Systems.WMO/TD-No.1580, 2011.
  • 加载中
  • -->

Catalog

    Figures(6)

    Article views (3412) PDF downloads(27) Cited by()
    • Received : 2015-03-04
    • Accepted : 2015-05-19
    • Published : 2015-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint