Liang Li, Ma Shuqing, Pang Wenjing, et al. Direction-finding location algorithm of cloud flashes. J Appl Meteor Sci, 2015, 26(5): 618-625. DOI:  10.11898/1001-7313.20150511.
Citation: Liang Li, Ma Shuqing, Pang Wenjing, et al. Direction-finding location algorithm of cloud flashes. J Appl Meteor Sci, 2015, 26(5): 618-625. DOI:  10.11898/1001-7313.20150511.

Direction-finding Location Algorithm of Cloud Flashes

DOI: 10.11898/1001-7313.20150511
  • Received Date: 2014-12-29
  • Rev Recd Date: 2015-05-27
  • Publish Date: 2015-09-30
  • Cloud lightning location is achieved by excluding solution with large gross errors to optimize initial solution, and joint constrained optimization of weighted integration and Gauss-Newton iterative algorithm based on the multi-station direction-finding cross-algorithm. The lighting position of each group is used as initial positioning solution, which is achieved according to elevation and information of azimuth. Initial solution is optimized through removing the solution with large gross errors by testing function of T-distribution, and then more accurate location information is obtained utilizing the weighted arithmetic. Cloud lightning location information is obtained accurately finally using Gauss-Newton iterative algorithm for constraint calculation. The algorithm is evaluated with the Monte Carlo simulation method, and then the influence of locating result is analyzed. Assuming the error of site layout is 10 m, the error of angle finding is 1°, the position precision is significantly improved using the algorithm of removing gross errors in four-station network simulation. The position precision of three-dimensiond angle of arrival loction (3D-AOA) is higher than integration solution under the same simulation conditions, which shows that the position precision is improved effectively by utilizing the weighted arithmetic and Gauss-Newton iterative algorithm. It shows that the accuracy of position is effectively improved and the deviation of four-station network is less than 500 m when the direction-finding error is 1°, and more stations lead to higher positional precision, but considering the balance of economic cost and precision, four-or five-station network is suggested. As the accuracy of direction-finding increases, the positional precision also increases. Analysis of different station network distributed shows that uniform distributed mode is better than others, the position precision of stations within a station network is clearly higher than stations out of the network. The error symmetry is convenient for analyzing data in practical application. Longer baseline leads to higher positioning accuracy of station network when the station number, station network structure and the direction-finding are fixed. Due to the sensitivity of finding system to the positioning distance, the error curve becomes less symmetrical when the baseline length reaches 100 km. The analysis on different baseline length of the station network positioning accuracy is only the theoretical result in the ideal case, a variety of factors such as instrument performance, detecting network, and hardware testing should be taken into comprehensive consideration in actual application.
  • Fig. 1  The sketch map of lightning radiation source and sites

    Fig. 2  Positioning error distribution for Δθφ=0.5°

    (unit:m, *denotes the location of sites)

    Fig. 3  Positioning error distribution for Δθφ=1°

    (unit:m, *denotes the location of sites)

    Fig. 4  Positioning error distribution for Δθφ=1.5°

    (unit:m, *denotes the location of sites)

    Fig. 5  Different disposition way of positioning accuracy

    (unit:m, *denotes the location of sites)

    Fig. 6  The positioning accuracy of different station number

    (unit:m, *denotes the location of sites)

    Fig. 7  Different positioning accuracy of the baseline length R

    (unit:m, *denotes the location of sites)

    Table  1  Target location and positioning results of different-algorithm processing

    定位算法 P1P2
    估计值距离差/km估计值距离差/km
    站1、站2定位(11.2841, 10.9815, 11.9707)2.5487(207.5448, 187.5402, 14.4163)11.544
    站1、站3定位(489.967, -371.926, 54.201)614.97(121.5323, 163.0574, 6.8494)80.337
    站1、站4定位(9.9387, 12.0577, 12.2632)3.0594(206.1214, 187.1350, 16.4622)11.407
    站2、站3定位(9.6487, 9.3406, 11.1953)1.4096(194.5842, 176.9904, 11.1215)6.2966
    站2、站4定位(-142.999, -143.828, 18.729)217.14(200.0445, 181.4351, 14.6315)4.8489
    站3、站4定位(8.5626, 10.6550, 11.4343)2.1337(194.2440, 175.9943, 13.6423)7.9021
    加权融合(25.9388, 7.3337, 14.3823)16.744(179.0228, 179.9303, 12.0337)21.075
    粗差加权融合(9.9322, 10.7581, 11.7097)1.8715(196.9330, 176.7247, 12.0337)4.9265
    3D-AOA(9.9105, 10.0164, 11.7052)3.7477×10-5(198.0982, 180.9891, 12.6110)3.3782
    DownLoad: Download CSV
  • [1]
    Rustan P L, Uman M A, Childers D Q, et al.Lightning source locations from VHF radiation data for a flash at Kennedy Space Center.J Geophys Res, 1980, 85(C9):4893-4903. doi:  10.1029/JC085iC09p04893
    [2]
    陈渭民.雷电学原理.北京:气象出版社, 2009.
    [3]
    Rison W, Thomas R J, Krehbiel P R, et al.A GPS-based three-dimensional lightning mapping system:Initial observations in Central New Mexico.Geophys Res Lett, 1999, 26(23):3573-3576. doi:  10.1029/1999GL010856
    [4]
    张阳, 张义军, 孟青, 等.北京地区正地闪时间分布及波形特征.应用气象学报, 2010, 21(4):442-449. doi:  10.11898/1001-7313.20100407
    [5]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
    [6]
    张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.11898/1001-7313.20060504
    [7]
    王学良, 张科杰, 张义军, 等.雷电定位系统与人工观测雷暴日数统计比较.应用气象学报, 2014, 25(6):741-750. doi:  10.11898/1001-7313.20140610
    [8]
    郭虎, 熊亚军.北京市雷电灾害易损性分析、评估及易损度区划.应用气象学报, 2008, 19(1):35-40. doi:  10.11898/1001-7313.20080107
    [9]
    张文娟, 孟青, 吕伟涛, 等.时间差闪电监测网的误差分析和布局优化.应用气象学报, 2009, 20(4):402-410. doi:  10.11898/1001-7313.20090403
    [10]
    佘玉莲, 陈德生, 谢君.VHF闪电定位技术评述.气象与环境科学, 2008(5): 55-58. http://www.cnki.com.cn/Article/CJFDTOTAL-HNQX200802013.htm
    [11]
    刘李楠, 赵晓萌.一种三维多站测向交叉定位算法.电子科技, 2011, 24(1):35-37. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKK201101010.htm
    [12]
    李洪梅, 陈培龙.三维多站测向交叉算法及精度分析.指挥控制与仿真, 2007(2):54-59. http://www.cnki.com.cn/Article/CJFDTOTAL-QBZH200702014.htm
    [13]
    赵温波, 曲成华, 方青, 等.雷达组网拟牛顿融合定位算法研究.现代雷达, 2012, 34(6):35-44. http://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201206010.htm
    [14]
    胡志祥. 雷电定位算法和误差分析理论研究. 武汉: 华中科技大学, 2012.
    [15]
    吕帅华, 孙秀琴, 张占鹏, 等.一种基于高斯-牛顿法的光电经纬仪交会测量算法.光电工程, 2006, 33(11):22-25. doi:  10.3969/j.issn.1003-501X.2006.11.005
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (3381) PDF downloads(14) Cited by()
    • Received : 2014-12-29
    • Accepted : 2015-05-27
    • Published : 2015-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint