Ren Hongli, Wu Jie, Zhao Chongbo, et al. Progresses of MJO prediction researches and developments. J Appl Meteor Sci, 2015, 26(6): 658-668. DOI:  10.11898/1001-7313.20150602.
Citation: Ren Hongli, Wu Jie, Zhao Chongbo, et al. Progresses of MJO prediction researches and developments. J Appl Meteor Sci, 2015, 26(6): 658-668. DOI:  10.11898/1001-7313.20150602.

Progresses of MJO Prediction Researches and Developments

DOI: 10.11898/1001-7313.20150602
  • Received Date: 2015-09-25
  • Rev Recd Date: 2015-10-14
  • Publish Date: 2015-11-30
  • Madden-Julian oscillation (MJO) is the dominant mode of the sub-seasonal to seasonal (S2S) time-scale variability. It has great impacts on weather and climate events at low latitudes, and also influences the circulation at mid-high latitudes by its meridional propagation and stimulating teleconnection wave trains, which presents a primary source of predictability on extended-range time scale. Therefore, the MJO prediction, which is the crucial part of S2S climate prediction, has been paid much attention in recent years. Firstly, the history of MJO prediction is reviewed, and then the current status of MJO prediction in main international research and operation institutions is summarized. Furthermore, the latest progress of the MJO prediction technique development and operation system establishment in National Climate Center of China Meteorological Administration (NCC/CMA) is focused on. The development goal and research plan for the MJO prediction on next step in NCC/CMA are prospected finally.
        Basic methodologies for the MJO prediction include the statistical and dynamical models. In recent years, big progresses have been made for two methodologies. For the former, the so-called spatial-temporal projection method (STPM) can extend the valid length of the MJO prediction to 25-30 days in terms of pentad mean. For the latter, atmospheric and coupled general circulation models (GCMs) have significantly pushed skills of the MJO prediction forward. Until now, the major research and operational institutions in the world have the valid prediction length longer than 20 days generally. More and more evidences indicate that the dynamical prediction based on GCMs is the most promising direction of MJO prediction. Indeed, it plays the crucial role in the model prediction that the GCMs need more adequate initial values including strong MJO signals, well designed initialization schemes making initial values dynamically consistent with model, and effectively perturbed ensemble members in terms of uncertainties from both initial values and model physics.
        In NCC/CMA, its own MJO prediction system using both the statistical and model is developed. On one hand, the STPM is now applied to the quasi-operational MJO prediction and the countrywide extended-range pentad-mean prediction of China station precipitation. On the other hand, methods and techniques of using BCC_AGCM2.2 and BCC_CSM1.1(m) models are being developed quickly in NCC/CMA, where particularly, a real-time MJO monitoring prediction system based on BCC_AGCM2.0 is established, fed by observations which all from CMA. By this system, daily real-time monitoring and prediction operational products are issued for forecaster use. Recently, a new ensemble method has been put forwards by averaging prediction results of BCC_CSM 1.1(m) with three different initialization schemes, which can significantly improve the MJO prediction and make the valid length reach about 20 days. Further studies are necessary for the MJO prediction, especially for that using the coupled GCMs.
  • Fig. 1  Skills of predictions and hindcasts based on models in the main international research and operation institutions

    Fig. 2  Conceptual diagram of ISV/MJO monitoring and prediction system being developed in National Climate Center of China Meteorological Administration

    Fig. 3  Organizational chart of IMPRESS1.0 established in National Climate Center of China Meteorological Administration

    Fig. 4  Correlation coefficient skill scores for bivariate RMM index of IMPRESS1.0 hindcasts in different seasons

  • [1]
    国家气候中心.2008年初我国南方低温雨雪冰冻灾害及气候分析.北京:气象出版社, 2008.
    [2]
    Madden R A, Julian P R.Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific.J Atmos Sci, 1971, 28(5):702-708. doi:  10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
    [3]
    Madden R A, Julian P R.Description of global-scale circulation cells in the tropics with a 40-50 day period.J Atmos Sci, 1972, 29(6):1109-1123. doi:  10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
    [4]
    Lau K M, Chan P H.Aspects of the 40-50 day oscillation during the northern summer as inferred from outgoing longwave radiation.Mon Wea Rev, 1986, 114(7):1354-1367. doi:  10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2
    [5]
    Li C, Wu P.An observational study of the 30-50 day atmospheric oscillations.Part Ⅰ:Structure and propagation.Adv Atmos Sci, 1990, 7:294-304. doi:  10.1007/BF03179762
    [6]
    Sperber K R.Propagation and the vertical structure of the Madden-Julian Oscillation.Mon Wea Rev, 2003, 131:3018-3037. doi:  10.1175/1520-0493(2003)131<3018:PATVSO>2.0.CO;2
    [7]
    Zhang C.Madden-Julian Oscillation.Rev Geophys, 2005, 43, RG 2003, doi: 10.1029/2004RG000158.
    [8]
    Lin A L, Kiladis G N, Mapes B E, et al.Tropical intraseasonal variability in 14 IPCC AR4 climate models.Part Ⅰ:Convective signals.J Clim, 2006, 19(12):2665-2690. doi:  10.1175/JCLI3735.1
    [9]
    Jiang X A, Li T, Wang B.Structures and mechanism of the northward propagating boreal summer intraseasonal oscillation.J Clim, 2004, 18:1022-1039.
    [10]
    贾小龙, 李崇银.热带大气季节内振荡的季节性特征及其在SAMIL-R42L9中的表现.热带气象学报, 2007, 23(2):219-228. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200703001.htm
    [11]
    Lin A, Li T.Energy spectrum characteristics of boreal summer intraseasonal oscillations:Climatology and variations during the ENSO developing and decaying phases.J Clim, 2008, 21:6304-6320. doi:  10.1175/2008JCLI2331.1
    [12]
    Wheeler M, Hendon H H.An all-season real-time multivariate MJO index:Development of an index for monitoring and prediction.Mon Wea Rev, 2004, 132:1917-1932. doi:  10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
    [13]
    李崇银, 周亚萍.热带大气季节内振荡和ENSO的相互关系.地球物理学报, 1994, 37:17-26. doi:  10.3321/j.issn:0001-5733.1994.01.003
    [14]
    Zhang C, Gottschalck J.SST anomalies of ENSO and the Madden-Julian Oscillation in the equatorial Pacific.J Clim, 2002, 15:2429-2445. doi:  10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2
    [15]
    Bastone C, Hendon H H.Characteristics of stochastic variability associated with ENSO and the role of the MJO.J Clim, 2005, 18:1773-1789. doi:  10.1175/JCLI3374.1
    [16]
    何金海, Murakami T, Nakazawa T.1979年夏季亚洲季风区域40-50天周期振荡的环流及其水汽输送场的变化.南京气象学院学报, 1984, 7(2):163-175. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198402003.htm
    [17]
    穆明权, 李崇银.1998年南海夏季风爆发与大气季节内振荡的活动.气候与环境研究, 2000, 5(4):375-387. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200004004.htm
    [18]
    Annamalai H, Slingo J M.Active/break cycles: Diagnosis of the intraseasonal variability over the Asian summer monsoon.Clim Dyn, 2001, 18:85-102. doi:  10.1007/s003820100161
    [19]
    Chan J C L, Ai W X, Xu J J.Mechanisms responsible for the maintenance of the 1998 South China Sea summer monsoon.J Meteor Soc Japan, 2002, 80:1103-1113. doi:  10.2151/jmsj.80.1103
    [20]
    琚建华, 钱诚, 曹杰.东亚夏季风的季节内振荡研究.大气科学, 2005, 29(2):187-194. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200502002.htm
    [21]
    琚建华, 孙丹, 吕俊梅.东亚季风涌对我国东部大尺度降水过程的影响分析.大气科学, 2007, 31(26):1129-1139. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706010.htm
    [22]
    韩荣青, 李维京, 董敏.北半球副热带-中纬度太平洋大气季节内振荡的纬向传播与东亚夏季旱涝.气象学报, 2006, 64(2):149-163. doi:  10.11676/qxxb2006.015
    [23]
    Wen M, Zhang R H.Quasi-biweekly oscillation of the convection around Sumatra and low-level tropical circulation in boreal spring.Mon Wea Rev, 2008, 136:189-205. doi:  10.1175/2007MWR1991.1
    [24]
    Lawrence D M, Webster P J.The boreal summer intraseasonal oscillation:Relationship between northward and eastward movement of convection.J Atmos Sci, 2002, 59:1593-1606. doi:  10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2
    [25]
    Rao S, Yamagata T.Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances.Geophys Res Lett, 2004, 31(19):329-340. https://www.researchgate.net/publication/228875478_Abrupt_termination_of_Indian_Ocean_Dipole_events_in_response_to_intraseasonal_disturbances
    [26]
    Han W Q, Shinoda T, Fu L L, et al.Impact of atmospheric intraseasonal oscillations on the Indian Ocean dipole during the 1990s.J Phys Oceanogr, 2006, 36:670-690. doi:  10.1175/JPO2892.1
    [27]
    Liebmann B, Hendon H, Glick J.The relationship between tropical cyclones of the western Pacific and Indian oceans and the Madden-Julian Oscillation.J Meteor Soc Japan, 1994, 72:401-411. doi:  10.2151/jmsj1965.72.3_401
    [28]
    Molinari J, Knight D, Dickinson M, et al.Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis.Mon Wea Rev, 1997, 125:2699-2708. doi:  10.1175/1520-0493(1997)125<2699:PVEWAE>2.0.CO;2
    [29]
    Maloney E D, Hartmann D L.Modulation of eastern North Pacific hurricanes by the Madden-Julian Oscillation.J Clim, 2000, 13:1451-1460. doi:  10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2
    [30]
    Higgins R W, Shi W.Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system.J Clim, 2001, 14:403-417. doi:  10.1175/1520-0442(2001)014<0403:IOTPMO>2.0.CO;2
    [31]
    Bessafi M, Wheeler M C.Modulation of south Indian Ocean tropical cyclones by the Madden-Julian oscillation and convectively coupled equatorial waves.Mon Wea Rev, 2006, 134:638-656. doi:  10.1175/MWR3087.1
    [32]
    金小霞, 何金海, 占瑞芬, 等.大气季节内振荡对热带气旋活动影响的研究进展.热带气象学报, 2011, 27(1):133-138. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201101015.htm
    [33]
    Jeong J H, Kim B M, Ho C H, et al.Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion.J Clim, 2008, 21:788-801. doi:  10.1175/2007JCLI1801.1
    [34]
    吴俊杰, 袁卓建, 钱钰坤, 等.热带季节内振荡对2008年初南方持续性冰冻雨雪天气的影响.热带气象学报, 2009, 25(增刊Ⅰ):103-112. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX2009S1012.htm
    [35]
    Jia X L, Chen L J, Ren F M, et al.Impacts of the MJO on winter rainfall and circulation in China.Adv Atmos Sci, 2011, 28(3):521-533. doi:  10.1007/s00376-010-9118-z
    [36]
    贾小龙, 梁潇云.热带MJO对2009年11月我国东部大范围雨雪天气的可能影响.热带气象学报, 2011, 27(5):639-648. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201105005.htm
    [37]
    Zhang R, Li T, Wen M, et al.Role of intraseasonal oscillation in asymmetric impacts of El Nio and La Nia on the rainfall over southern China in boreal winter.Clim Dyn, 2015, 45:559-567. doi:  10.1007/s00382-014-2207-4
    [38]
    Li T, Zhang R, Wen M.Impact of ENSO on the precipitation over China in winter half-years.J Trop Meteorol, 2015, 21:161-170. https://www.researchgate.net/publication/292462228_IMPACT_OF_ENSO_ON_THE_PRECIPITATION_OVER_CHINA_IN_WINTER_HALF-YEARS
    [39]
    梁萍, 丁一汇.基于季节内振荡的延伸期预报试验.大气科学, 2012, 36(1):102-116. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201201009.htm
    [40]
    梁萍, 何金海, 穆海振.MJO在延伸期预报中的应用进展.气象科技进展, 2013, 3(1):31-38. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201301011.htm
    [41]
    Storch H, Xu J.Principal oscillation pattern analysis of the 30-60-day oscillation in the tropical troposphere.Clim Dyn, 1990, 4:175-190. doi:  10.1007/BF00209520
    [42]
    Waliser D E, Jones C, Schemm J K E, et al.A statistical extended-range tropical forecast model based on the slow evolution of the Madden-Julian Oscillation.J Clim, 1999, 12:1918-1939. doi:  10.1175/1520-0442(1999)012<1918:ASERTF>2.0.CO;2
    [43]
    Lo F, Hendon H H.Empirical extended-range prediction of the Madden-Julian Oscillation.Mon Wea Rev, 2000, 128:2528-2543. doi:  10.1175/1520-0493(2000)128<2528:EERPOT>2.0.CO;2
    [44]
    Mo K C.Adaptive filtering and prediction of intraseasonal oscillations.Mon Wea Rev, 2001, 129:802-817. doi:  10.1175/1520-0493(2001)129<0802:AFAPOI>2.0.CO;2
    [45]
    Wheeler M, Weickmann K M.Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability.Mon Wea Rev, 2001, 129:2677-2694. doi:  10.1175/1520-0493(2001)129<2677:RTMAPO>2.0.CO;2
    [46]
    Jones C, Carvalho L M V, Wayne H R, et al.A statistical forecast model of tropical intraseasonal convective anomalies.J Clim, 2004, 17:2078-2095. doi:  10.1175/1520-0442(2004)017<2078:ASFMOT>2.0.CO;2
    [47]
    Maharaj E A, Wheeler M C.Forecasting an index of the Madden-oscillation.Int J Climatol, 2005, 25:1611-1618. doi:  10.1002/(ISSN)1097-0088
    [48]
    Jiang X, Waliser D E, Wheeler M C, et al.Assessing the skill of an all-season statistical forecast model for the Madden-Julian Oscillation.Mon Wea Rev, 2008, 136:1940-1956. doi:  10.1175/2007MWR2305.1
    [49]
    Love B S, Matthews A J, Janacek G J.Real-time extraction of the Madden-Julian Oscillation using empirical mode decomposition and statistical forecasting with a VARMA model.J Clim, 2008, 21:5318-5335. doi:  10.1175/2008JCLI1977.1
    [50]
    Love B S, Matthews A J.Real-time localised forecasting of the Madden-Julian Oscillation using neural network models.Q J R Meteorol Soc, 2009, 135:1471-1483. doi:  10.1002/qj.v135:643
    [51]
    Seo K H, Wang W, Gottschalck J, et al.Evaluation of MJO forecast skill from several statistical and dynamical forecast models.J Clim, 2009, 22:2372-2388. doi:  10.1175/2008JCLI2421.1
    [52]
    Kang I S, Kim H M.Assessment of MJO predictability for boreal winter with various statistical and dynamical models.J Clim, 2010, 23:2368-2378. doi:  10.1175/2010JCLI3288.1
    [53]
    Kondrashov D, Chekroun M D, Robertson A W, et al.Loworder stochastic model and "past-noise forecasting" of the Madden-Julian Oscillation.Geophys Res Lett, 2013, 40:5305-5310. doi:  10.1002/grl.50991
    [54]
    Cavanaugh N R, Teddy A, Subramanian A, et al.The skill of atmospheric linear inverse models in hindcasting the Madden-Julian Oscillation.Clim Dyn, 2014, 44:897-906. https://www.researchgate.net/publication/271657374_The_skill_of_atmospheric_linear_inverse_models_in_hindcasting_the_Madden-Julian_Oscillation
    [55]
    Zhu Z W, Li T, Hsu P C, et al.A spatial-temporal projection for extended-range forecast in the tropics.Clim Dyn, 2015, 45(3):1085-1098.
    [56]
    Van den Dook H M.Searching for analogues, how long must we wait?Tellus, 1994, 46A:314-324. https://www.researchgate.net/publication/227697459_Searching_for_analogues_how_long_must_we_wait
    [57]
    贾小龙, 袁媛, 任福民, 等.热带大气季节内振荡 (MJO) 实时监测预测业务.气象, 2012, 38(4):425-431. doi:  10.7519/j.issn.1000-0526.2012.04.006
    [58]
    Hsu P C, Li T, You L, et al.A spatial-temporal projection method for 10-30-day forecast of heavy rainfall in Southern China.Clim Dyn, 2015, 44(5):1227-1244.
    [59]
    Slingo J M, Sperber K R, Boyle J S, et al.Intraseasonal oscillations in 15 atmospheric general circulation models:Results from an AMIP diagnostic subproject.Clim Dyn, 1996, 12(5):325-357. doi:  10.1007/BF00231106
    [60]
    Seo K H, Wang W.The Madden-Julian oscillation simulated in the NCEP Climate Forecast System model:The importance of stratiform heating.J Clim, 2009, 23:4770-4793.
    [61]
    Wang W Q, Jang P H, Almazroui M.Examination of multi-perturbation methods for ensemble prediction of the MJO during boreal summer.Clim Dyn, 2014, 42:2627-2637. doi:  10.1007/s00382-013-1819-4
    [62]
    Rashid H A, Hendon H H, Wheeler M C, et al.Prediction of the Madden-Julian oscillation with the POAMA dynamical prediction system.Clim Dyn, 2011, 36:649-661. doi:  10.1007/s00382-010-0754-x
    [63]
    Hudson D, Marshall A G, Yin Y H, et al.Improving intraseasonal prediction with a new ensemble generation strategy.Mon Wea Rev, 2013, 141:4429-4449. doi:  10.1175/MWR-D-13-00059.1
    [64]
    Kang I S, Jang P H, Almazroui M.Examination of multi-perturbation methods for ensemble prediction of the MJO during boreal summer.Clim Dyn, 2014, 42:2627-2637. doi:  10.1007/s00382-013-1819-4
    [65]
    Fu X H, Lee J Y, Hsu P C, et al.Multi-model MJO forecasting during DYNAMO/CINDY period.Clim Dyn, 2013, 41:1067-1081. doi:  10.1007/s00382-013-1859-9
    [66]
    Vitart F, Woolnough S, Balmaseda M A, et al.Monthly forecast of the Madden-Julian Oscillation using a coupled GCM.Mon Wea Rev, 2007, 135:2700-2715. doi:  10.1175/MWR3415.1
    [67]
    Vitart F, Molteni F.Simulation of the MJO and its teleconnections in the ECMWF forecast system.Q J R Meteorol Soc, 2010, 136:842-855. doi:  10.1002/qj.v136:649
    [68]
    Vitart F.Evolution of ECMWF sub-seasonal forecast skill scores.Q J R Meteorol Soc, 2014, 140:1889-1899. doi:  10.1002/qj.2014.140.issue-683
    [69]
    Fu X, Wang B, Bao Q, et al.Impacts of initial conditions on monsoon intraseasonal forecasting.Geophys Res Lett, 2009, 36, L08801, doi: 10.1029/2009GL037166.
    [70]
    Fu X, Wang B, Lee J Y, et al.Sensitivity of dynamical intraseasonal prediction skills to different initial conditions.Mon Wea Rev, 2011, 139:2572-2592. doi:  10.1175/2011MWR3584.1
    [71]
    Toth Z, Kalnay E.Ensemble forecasting at NMC: The generation of perturbations.Bull Amer Meteor Soc, 1993, 74:2317-2330. doi:  10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
    [72]
    Liess S, Waliser D E, Schubert S D.Predictability studies of the intraseasonal oscillation with the ECHAM5 GCM.J Atmos Sci, 2005, 62:3320-3336. doi:  10.1175/JAS3542.1
    [73]
    Chikamoto Y, Mukougawa H, Kubota T, et al.Evidence of growing bred vector associated with the tropical intraseasonal oscillation.Geophys Res Lett, 2007, 34:L04806, doi: 10.1029/2006GL028450.
    [74]
    Kug J S, Ham Y G, Kimoto M, et al.New approach for optimal perturbation method in ensemble climate prediction with empirical singular vector.Clim Dyn, 2010, 35:331-340. doi:  10.1007/s00382-009-0664-y
    [75]
    Ham Y G, Schubert S D, Chang Y.Optimal Initial perturbations for ensemble prediction of the Madden-Julian Oscillation during boreal winter.J Clim, 2012, 25:4932-4945. doi:  10.1175/JCLI-D-11-00344.1
    [76]
    Neena J M, Lee J Y, Waliser D.Predictability of the Madden-Julian Oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE).J Clim, 2014, 27:4531-4543. doi:  10.1175/JCLI-D-13-00624.1
    [77]
    宋连春, 肖风劲, 李威.我国现代化气候业务现状及未来发展趋势.应用气象学报, 2013, 24(5):513-520. doi:  10.11898/1001-7313.20130501
    [78]
    贾小龙, 陈丽娟, 高辉, 等.我国短期气候预测技术进展.应用气象学报, 2013, 24(6):641-655. doi:  10.11898/1001-7313.20130601
    [79]
    封国林, 赵俊虎, 支蓉, 等.动力-统计客观定量化汛期降水预测研究新进展.应用气象学报, 2013, 24(6):656-665. doi:  10.11898/1001-7313.20130602
    [80]
    李清泉, 孙丞虎, 袁媛, 等.近20年我国气候监测预测业务技术的主要进展.应用气象学报, 2013, 24(6):666-676. doi:  10.11898/1001-7313.20130603
    [81]
    刘长征, 杜良敏, 柯宗建, 等.国家气候中心多模式解释应用集成预测.应用气象学报, 2013, 24(6):677-685. doi:  10.11898/1001-7313.20130604
    [82]
    贾小龙, 李崇银.热带大气季节内振荡及其数值模拟.北京:气象出版社, 2010.
    [83]
    Zhao C B, Zhou T J, Song L C, et al.The boreal summer intraseasonal oscillation simulated by four Chinese AGCMs participating in the CMIP5 project.Adv Atmos Sci, 2014, 31(5):1167-1180. doi:  10.1007/s00376-014-3211-7
    [84]
    吴统文, 宋连春, 刘向文.国家气候中心短期气候预测模式系统业务化进展.应用气象学报, 2013, 24(5):533-543. doi:  10.11898/1001-7313.20130503
    [85]
    Wu T, Song L, Li W, et al.An overview of BCC climate system model development and application for climate change studies.J Meteor Res, 2014, 28(1):34-56.
    [86]
    Xiang B, Zhao M, Jiang X, et al.The week MJO prediction skill in a GFDL Coupled Model.J Climate, 2015, 28:5351-5364, doi: 10.1175/JCLI-D-15-0102.1.
    [87]
    丑纪范, 任宏利.数值天气预报--另类途径的必要性和可行性.应用气象学报, 2006, 17(2):240-244. doi:  10.11898/1001-7313.20060216
    [88]
    任宏利.动力季节预测中预报误差与物理因子的关系.应用气象学报, 2008, 19(3):276-286. doi:  10.11898/1001-7313.20080303
    [89]
    郑志海, 封国林, 丑纪范, 等.数值预报中自由度的压缩及误差相似性规律.应用气象学报, 2010, 21(2):139-148. doi:  10.11898/1001-7313.20100202
    [90]
    谭桂容, 段浩, 任宏利.中高纬度地区500 hPa高度场动力预测统计订正.应用气象学报, 2012, 23(3):304-311. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120306&flag=1
  • 加载中
  • -->

Catalog

    Figures(4)

    Article views (4224) PDF downloads(1276) Cited by()
    • Received : 2015-09-25
    • Accepted : 2015-10-14
    • Published : 2015-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint