Tang Yingjie, Ma Shuqing, Yang Ling, et al. Observation and comparison of cloud-base heights by ground-based millimeter-wave cloud radar. J Appl Meteor Sci, 2015, 26(6): 680-687. DOI:  10.11898/1001-7313.20150604.
Citation: Tang Yingjie, Ma Shuqing, Yang Ling, et al. Observation and comparison of cloud-base heights by ground-based millimeter-wave cloud radar. J Appl Meteor Sci, 2015, 26(6): 680-687. DOI:  10.11898/1001-7313.20150604.

Observation and Comparison of Cloud-base Heights by Ground-based Millimeter-wave Cloud Radar

DOI: 10.11898/1001-7313.20150604
  • Received Date: 2015-03-02
  • Rev Recd Date: 2015-07-15
  • Publish Date: 2015-11-30
  • As cloud automatic observation achieved breakthrough progress, a long-term comparison test on different devices is needed to select the suitable cloud observation equipment for regular operation of China. A Ka-band millimeter-wave (35 GHz) cloud radar (KaCR) and a vaisala laser ceilometer (VCEIL) are installed in Meteorological Observation Center of CMA, and data are compared with L-band rawinsonde observations (LRAOBS) in Beijing Weather Observatory from 20 Nov to 31 Dec in 2014. Among these instruments, the KaCR observes the echo power value and its temporal resolution is from 1 s to 60 s, the VCEIL measures the back scattering intense data with the same temporal resolution of KaCR, and the LRAOBS works twice every day. Data acquisition ratio measured by KaCR and VCEIL under different visibility conditions are compared. A comparison test of cloud base heights and cloud top heights measured by KaCR and VCEIL is also carried out. A comparison test of cloud base height and cloud top height measured by KaCR and LRAOBS and a real example is analyzed. And the cloud base heights and cloud top heights measured by KaCR, VCEIL and LRAOBS during a precipitation process are compared too.
        The result indicates that the detection ability of KaCR is better than VCEIL under low visibility condition, and their difference of detection ability reduces with the visibility increasing. The cloud base heights measured by KaCR and VCEIL are well consistent, with the correlation coefficient reaching 0.92. The correlation coefficient of cloud base height between KaCR and LRAOBS is about 0.93, and that between KaCR and LRAOBS is about 0.78. Cloud base height measured by KaCR is slightly lower than that measured by VCEIL and LRAOBS, and cloud top height measured by KaCR is slightly lower than that measured by LRAOBS. KaCR can clearly show the process of cloud formation and dissipation and the structure changes of cloud compared with VCEIL and LRAOBS, but cannot accurately identify the cloud base position when it rains.
  • Fig. 1  The position of cloud radar, ceilometer and rawinsonde

    Fig. 2  The data acquisition between cloud radar and ceilometer in different visibility conditions

    Fig. 3  Consistency comparison of cloud base height measured by cloud radar and ceilomter from 20 Nov to 31 Dec in 2014

    Fig. 4  The comparison of cloud base height (a) and cloud top height (b) observed by cloud radar and rawinsonde

    Fig. 5  Cloud observed by cloud radar and ceilometer from 1900 BT to 2000 BT on 27 Nov and 6 Dec in 2014 (a) the reflectivity of cloud observed by cloud radar on 6 Dec 2014, (b) the temperature and relative humidity observed by rawinsonde on 6 Dec 2014, (c) the reflectivity of cloud observed by cloud radar on 27 Nov 2014, (d) the temperature and relative humidity observed by rawinsonde on 27 Nov 2014

    Fig. 6  A precipitation weather process from 28 Nov to 30 Nov in 2014 (a) the reflectivity observed by cloud radar, (b) the cloud base height observed by cloud radar and ceilometer

    Table  1  The comparison of data acquisition capability between cloud radar and ceilometer (unit:%)

    数据获取率 云雷达 云高仪
    总计 91 67
    多层云 81 64
    能见度为[0, 1 km) 97 27
    能见度为[1 km, 5 km) 86 64
    能见度为[5 km, 10 km) 87 80
    能见度为[10 km, +∞) 83 82
    DownLoad: Download CSV

    Table  2  The comparison of average cloud base height measured by cloud radar and ceilometer from 20 Nov to 31 Dec in 2014(unit:m)

    观测分类 低云 中云 高云
    云雷达观测 1546 3541 6229
    云高仪观测 1920 3501 6242
    云雷达观测结果1 1217 3314 5925
    云高仪观测结果1 1900 3908 6410
    DownLoad: Download CSV

    Table  4  Comparison of averaged cloud base and top height measured by cloud radar ceilometer and rawinsonde from 28 Nov to 30 Nov in 2014(unit:m)

    时间 云底高度 云顶高度
    云雷达 云高仪 探空 云雷达 探空
    29T07:00—08:00 8155 9240
    29T19:00—20:00 1020 1150 8780 8794
    30T07:00—08:00 1170 1860 1659 5850 5963
    30T19:00—20:00
    DownLoad: Download CSV
  • [1]
    胡树贞, 马舒庆, 陶法, 等.基于红外实时阈值的全天空云观测.应用气象学报, 2013, 24(2):179-188. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20130206&flag=1
    [2]
    汪宏七, 赵高祥.云物理特性对云光学和云辐射性质的影响.应用气象学报, 1996, 7(1):36-44. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960105&flag=1
    [3]
    盛裴轩, 毛节泰, 李建国, 等.大气物理.北京:气象出版社, 2003:444-445.
    [4]
    屈右铭, 蔡荣辉, 朱立娟, 等.云分析系统在台风莫拉菲数值模拟中的应用.应用气象学报, 2012, 23(5):551-561. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120505&flag=1
    [5]
    仲凌志, 刘黎平, 葛润生, 等.毫米波测云雷达的特点及其研究现状与展望.气象学报, 2009, 24(4):383-391. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200904003.htm
    [6]
    Houghton J T, Ding Y, Griggs D J, et al.Climate Change 2001.The Scientific Basis.Cambridge:Cambridge University Press, 2001.
    [7]
    Liou K N. 大气辐射导论. 郭彩丽, 周诗建, 译. 北京: 气象出版社, 2004: 122-127.
    [8]
    胡树贞, 马舒庆, 陶法, 等.地基双波段测云系统及其对比试验.应用气象学报, 2012, 23(4):441-450. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120407&flag=1
    [9]
    高太长, 刘磊, 赵世军, 等.全天空测云技术现状及进展.应用气象学报, 2010, 21(1):101-108. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100114&flag=1
    [10]
    章文星, 吕达仁.地基热红外云高观测与云雷达及激光云高仪的相互对比.大气科学, 2012, 36(4):657-672. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201204002.htm
    [11]
    黄兴友, 夏俊荣, 卜令兵, 等.云底高度的激光云高仪、红外测云仪以及云雷达观测对比分析.量子电子学报, 2013, 30(1):73-78. http://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201301015.htm
    [12]
    彭亮. ARM云雷达及其他相关仪器观测资料综合分析研究. 北京: 中国科学院研究生院, 2009.
    [13]
    刘红亚, 薛纪善, 沈桐立, 等.探空气球漂移及其对数值预报影响的研究.应用气象学报, 2005, 16(4):518-525. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050465&flag=1
    [14]
    李伟, 李峰, 赵志强, 等.L波段气象探测系统建设技术评估报告.北京:气象出版社, 2009.
    [15]
    Poore K D, Wang J H, Rossow W B.Clould layer thicknesses from a combination of surface and upper-air observations.J Climate, 1995, 8(3):550-568. doi:  10.1175/1520-0442(1995)008<0550:CLTFAC>2.0.CO;2
    [16]
    Wang J H, Rossow W B.Determination of cloud vertical structure from upper-air observations.J Applied Meteor, 1995, 34:2243-2258. doi:  10.1175/1520-0450(1995)034<2243:DOCVSF>2.0.CO;2
    [17]
    Chernykh I V, Eskridge R E.Determination of cloud amount and level from radiosonde soundings.J Applied Meteor, 1996, 35:1362-1369. doi:  10.1175/1520-0450(1996)035<1362:DOCAAL>2.0.CO;2
    [18]
    周毓荃, 欧建军.利用探空数据分析云垂直结构的方法及其应用研究.气象, 2010, 36(11):50-58. http://cdmd.cnki.com.cn/Article/CDMD-10300-1011155615.htm
    [19]
    蔡淼, 欧建军, 周毓荃, 等.L波段探空判别云区方法的研究.大气科学, 2014, 38(2):213-222. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201402002.htm
    [20]
    张日伟, 严卫, 韩丁, 等.基于RS92探空资料的云垂直结构判定及其分布研究.遥感技术与应用, 2012, 27(2):231-236. http://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201202011.htm
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(3)

    Article views (3646) PDF downloads(1386) Cited by()
    • Received : 2015-03-02
    • Accepted : 2015-07-15
    • Published : 2015-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint