Li Lin, Fan Xuebo, Cui Wei, et al. Comparative analysis of precipitation between weighing gauge and manual gauge. J Appl Meteor Sci, 2015, 26(6): 688-694. DOI:  10.11898/1001-7313.20150605.
Citation: Li Lin, Fan Xuebo, Cui Wei, et al. Comparative analysis of precipitation between weighing gauge and manual gauge. J Appl Meteor Sci, 2015, 26(6): 688-694. DOI:  10.11898/1001-7313.20150605.

Comparative Analysis of Precipitation Between Weighing Gauge and Manual Gauge

DOI: 10.11898/1001-7313.20150605
  • Received Date: 2015-01-15
  • Rev Recd Date: 2015-07-20
  • Publish Date: 2015-11-30
  • Precipitation data play an important role in meteorological observation and relative applications. In order to accelerate CMA meteorological modernization, nearly 1000 weighing gauges are put into use in relative quantities national meteorological stations as an alternative observation device different from manual gauge for precipitation. Although field intercomparison experiments are carried out before the usage of weighing guage, there still exist some doubts on this kind of instrument, particularly in liquid precipitation measurements.
        Based on 1064 groups of precipitation data observed by weighing gauge and manual gauge at 15 national meteorological stations in Beijing during November 2012 to January 2014, several analyses are carried out to find out differences between two precipitation observation methods. 1064 precipitation processes include 253 snowfalls or sleets and 811 rainfalls. The error of accumulated precipitation for 14 stations meets requirements of operation. Also, the deviation of quantitative precipitation value obtained by weighing gauge and manual gauge also is within the margin of error, with 88.0% coverage rate of analyzed precipitation. In terms of the comparison, the average daily precipitation observed by weighing gauge is 0.04 mm smaller, and the RMSE (root mean square error) is 0.54 mm. Corresponding to different precipitation patterns, results make difference. For snowfall measurement, the quantitative value of precipitation obtained by manual gauge is 0.12 mm smaller and the RMSE is 0.51 mm. But for rainfall measurement, the quantitative value of precipitation obtained by manual gauge is 0.19 mm larger and the RMSE is 0.64 mm. For each significant precipitation process, the judgment of precipitation grade with weighing gauge and manual gauges is very close. But, more light rain phenomena can be detected by weighing gauge, typically when the quantitative value of daily precipitation is under 0.2 mm. The weighing gauge is shielded with Tretyakov wind shield, while manual gauge is unshielded. Results show that weighing gauge could capture more precipitation than manual gauge for solid precipitation, while effects of Tretyakov wind shield are not significant for liquid precipitation. Also, it's found that evaporation from the container of weighing gauge could reduce the precipitation of rainfall. The daily precipitation between weighing gauge and manual gauge is obviously linearly related with the correlation coefficient of 0.9990. In detail, the correlation coefficient is 0.9984 for solid precipitation and 0.9992 for liquid precipitation, respectively.
        In general, weighing gauge is satisfactory for measuring all kinds of precipitation, showing considerable advantages over manual gauge when measuring snowfall, and it can minimize some potential errors in manual methods of precipitation measurement.
  • Fig. 1  Differences in monthly precipitation between weighing gauge and manual gauge

    Fig. 2  The frequency distribution of absolute differences in precipitation between weighing gauge and manual guage

    Fig. 3  Comparison of evaporation from weighing gauge container and pan evaporimeter at No.53499 in Aug 2013

    Fig. 4  Relationship between daily precipitation measured by weighing gauge and manual gauge

    Table  1  Comparison of precipitation between weighing gauge and manual gauge

    区站号 固态降水量 液态降水量 全相态降水量
    人工观测/mm 称重观测/mm 相对误差/% 人工观测/mm 称重观测/mm 相对误差/% 人工观测/mm 称重观测/mm 相对误差/%
    54399 83.1 85.0 2.3 533.2 514.7 -3.5 616.3 599.7 -2.7
    54406 117.6 122.3 4.0 501.8 488.0 -2.8 619.4 610.3 -1.5
    54410 146.7 166.1 13.2 464.8 481.9 3.7 611.5 648.0 6.0
    54412* 95.7 98.1 2.5
    54419 35.0 35.4 1.1 577.0 567.2 -1.7 612.0 602.6 -1.5
    54421* 61.9 63.5 2.6
    54424 25.5 26.9 5.5 557.8 545.7 -2.2 583.3 572.6 -1.8
    54431 78.8 78.9 0.1 489.4 468.1 -4.4 568.2 547.0 -3.7
    54499* 82.6 87.7 6.2
    54501 56.0 60.6 8.2 410.3 408.6 -0.4 466.3 469.2 0.6
    54505 88.6 89.9 1.5 461.5 456.2 -1.1 550.1 546.1 -0.7
    54513 73.0 74.6 2.2 531.2 526.6 -0.9 604.2 601.2 -0.5
    54594 67.3 67.3 0.0 541.8 531.2 -2.0 609.1 598.5 -1.7
    54596 57.1 58.3 2.1 495.6 487.0 -1.7 552.7 545.3 -1.3
    54597 53.8 55.5 3.2 656.7 650.7 -0.9 710.5 706.2 -0.6
    注:*表示该站仅进行固态降水对比。
    DownLoad: Download CSV
  • [1]
    胡玉峰.自动与人工观测数据的差异.应用气象学报, 2004, 15(6):719-726. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040689&flag=1
    [2]
    王颖, 刘小宁, 鞠晓慧.自动观测与人工观测差异的初步分析.应用气象学报, 2007, 18(6):849-855. doi:  10.11898/1001-7313.200706128
    [3]
    连志鸾.自动站与人工站观测记录的差异分析.气象, 2005, 31(3):48-52. doi:  10.7519/j.issn.1000-0526.2005.03.011
    [4]
    刘小宁, 鞠晓慧, 范邵华.空间回归检验方法在气象资料质量检验中的应用.应用气象学报, 2006, 17(1):37-42. doi:  10.11898/1001-7313.20060106
    [5]
    杨萍, 刘伟东, 仲跻芹, 等.北京地区自动气象站气温观测资料的质量评估.应用气象学报, 2011, 22(6):706-715. doi:  10.11898/1001-7313.20110608
    [6]
    任芝花, 余予, 邹凤玲, 等.部分地面要素历史基础气象资料质量检测.应用气象学报, 2012, 23(6):739-747. doi:  10.11898/1001-7313.20120611
    [7]
    中国气象局.气象仪器和观测方法指南 (第六版).北京:气象出版社, 2005:101-103. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201103007.htm
    [8]
    任芝花, 李伟, 雷勇, 等.降水测量对比试验及其主要结果.气象, 2007, 33(10):96-101. doi:  10.7519/j.issn.1000-0526.2007.10.014
    [9]
    王柏林, 王经业, 任芝花, 等.固体降水自动化观测试验.气象科技, 2009, 37(1):97-101. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200711008028.htm
    [10]
    姚作新.新疆阿勒泰国家基准气候站ZQZ-BH型称重式固态降水试验研究.气象, 2011, 37(6):714-719. doi:  10.7519/j.issn.1000-0526.2011.06.009
    [11]
    李林, 常晨, 范雪波, 等.春夏季DSH1与SL3-1型降水传感器数据比较.气象科技, 2013, 41(6):1008-1012. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201306007.htm
    [12]
    Goodison B, Louie P, Yang D.WMO Solid Precipitation Measurement Intercomparison:Final Report.WMO-TD 872, Geneva:WMO, 1998:10-15.
    [13]
    Sevruk B.Correction of Precipitation Measurements.WMO-TD_104, Geneva:WMO, 1985:13-23.
    [14]
    WMO.Guide to Meteorological Instruments and Methods of Observation.Geneva:WMO, 2006:105-109.
    [15]
    任芝花, 王改利, 邹风玲, 等.中国降水测量误差的研究.气象学报, 2003, 61(5):621-627. doi:  10.11676/qxxb2003.062
    [16]
    中国气象局.地面气象观测规范.北京:气象出版社, 2003:54-55. http://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201124015.htm
    [17]
    李林, 常晨, 张曼, 等.DSC2型称重式降水传感器的电源扰动及解决办法.气象水文海洋仪器, 2013(3):82-85;90. http://www.cnki.com.cn/Article/CJFDTOTAL-QXSW201303023.htm
    [18]
    任芝花, 冯明农, 张洪政, 等.自动与人工观测降雨量的差异及相关性.应用气象学报, 2007, 18(3):358-364. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070358&flag=1
    [19]
    黄嘉佑.气象统计分析与预报方法.北京:气象出版社, 2000:18-27. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ198603002.htm
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(1)

    Article views (2618) PDF downloads(1714) Cited by()
    • Received : 2015-01-15
    • Accepted : 2015-07-20
    • Published : 2015-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint