Zhang Shujie, Zhou Guangsheng, Li Rongping. Daily crop coefficient of spring maize using eddy covariance observation and its actual evapo-transpiration simulation. J Appl Meteor Sci, 2015, 26(6): 695-704. DOI:  10.11898/1001-7313.20150606.
Citation: Zhang Shujie, Zhou Guangsheng, Li Rongping. Daily crop coefficient of spring maize using eddy covariance observation and its actual evapo-transpiration simulation. J Appl Meteor Sci, 2015, 26(6): 695-704. DOI:  10.11898/1001-7313.20150606.

Daily Crop Coefficient of Spring Maize Using Eddy Covariance Observation and Its Actual Evapo-transpiration Simulation

DOI: 10.11898/1001-7313.20150606
  • Received Date: 2015-03-05
  • Rev Recd Date: 2015-06-26
  • Publish Date: 2015-11-30
  • Spring maize is one of the most important crops in Northeast China and accounts for about 1/3 of grain crop area. Due to climate change in Northeast China during recent years, climate warming and drying trend is very significant. As a result, drought disasters of spring maize occur frequently, moreover, it often occurs in the critical period of the formation of maize production, resulting in a serious impact on maize yield. How to scientifically irrigate maize farmland and ensure maize yield stable and high is a serious challenge. In order to accurately calculate the actual evapotranspiration of maize, dynamic daily crop coefficient of spring maize and its relationship with leaf area index are studied, using the latent heat flux data from eddy covariance (EC), and corresponding data including meteorological data, phenological data and leaf area data during 2006-2008 and 2011 at Jinzhou Agricultural Ecosystem Research Station. Results indicate that both daily crop coefficient and actual evapotranspiration of spring maize farmland ecosystem show a unimodal curve change, and they reach the maximum from late July to early August (maize flowering and silk stages). A new dynamic crop coefficient model under conditions of enough water supply is developed for spring maize, and it indicates the close linear relationship between crop coefficient and leaf area index (R2=0.88, F=73.5, P < 0.01). Furthermore, the relative leaf area index is simulated using the standardization of growth period based on cumulative temperature. The relationship between daily crop coefficient of spring maize and relative leaf area index are also developed (R2=0.93, F=527, P < 0.01), which solves the calculation of daily actual evapotranspiration over spring maize farmland ecosystems without the leaf area observation. This new model improves the crop coefficient suggested by FAO, and extends the calculation from phonological stages to daily scale.
        At present, crop coefficients come from different evapotranspiration observation methods, including lysimeter and eddy covariance, and different methods lead to significantly different results. The comparison shows that crop coefficients of maize at four phenological stages based on the evapotranspiration observations from eddy covariance towers are the closest to values suggested by FAO. The newly developed crop coefficient model is able to simulate daily actual evapotranspiration of spring maize farmland ecosystem with a good accuracy. It could provide theoretical basis for the management of agricultural water resources and irrigation.
  • Fig. 1  Comparison between maize actual evapotranspiration (ET) and reference evapotranspiration (ET0) from Apr to Sep in Jinzhou maize agricultural ecosystem

    Fig. 2  Daily crop coefficient of Jinzhou maize agricultural ecosystem in 2007

    Fig. 3  Relationship between crop coefficient (Kc) and leaf area index (ILA)

    Fig. 4  Relationship between crop coefficient (Kc) and relative leaf area index (IRLA)

    Fig. 5  Comparison between simulated and observed values (a) crop coefficient, (b) actual evapotranspiration

    Fig. 6  Daily changes of simulated and observed values (a) crop coefficient in 2008, (b) actual evapotranspiration

    Fig. 7  Comparison between simulated and observed values in 2011 (a) crop coefficient, (b) actual evapotranspiration

    Fig. 8  Daily changes of simulated and observed values in 2011 (a) crop coefficient, (b) actual evapotranspiration

    Table  1  Comparison of calculated Kc in present study with those values from FAO and other researches

    出处 玉米生育阶段 地区 ETET0观测及计算方法 (ET /ET0)
    初期 发展期 中期 后期
    本文 0.26 0.55 1.14 0.63 中国东北 EC/PM
    文献[28] 0.05 0.51 1.13 0.64 意大利波河河谷 EC/PM
    文献[29] 0.59 1.24 1.38 1.17 中国北部 Lys/Lys
    文献[30] 0.90 0.95 1.25 1.00 中国华北 Lys/Lys
    文献[31] 0.45 1.04 1.43 0.45 中国西北 Lys/PM
    文献[32] 0.42 1.45 1.3 中国华北 Lys/PM
    文献[27] 0.25 1.25 0.65 中国西北 Lys/PM
    文献[33] 0.61 0.85~1.00 1.02 1.07 中国西北 Lys/PM
    文献[34] 0.37 0.79 1.10 0.90 美国德克萨斯州 Lys/Lys
    文献[17] 0.30 1.20 0.35~0.60
    注:EC为涡度相关法, Lys为蒸渗仪法,PM为FAO Penman-Monteith法。
    DownLoad: Download CSV
  • [1]
    张淑杰, 张玉书, 纪瑞鹏, 等.东北地区玉米干旱时空特征分析.干旱地区农业研究, 2011, 29(1):231-236. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201101041.htm
    [2]
    孙力, 沈柏竹, 安刚.中国东北地区地表干湿状况的变化及趋势分析.应用气象学报, 2003, 14(5):542-552. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030568&flag=1
    [3]
    魏凤英, 张婷.东北地区干旱强度频率分布特征及其环流背景.自然灾害学报, 2009, 18(3):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200903000.htm
    [4]
    张淑杰, 张玉书, 陈鹏狮, 等.东北地区湿润指数及其干湿界线的变化特征.干旱地区农业研究, 2011, 29(3):226-232. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200910004114.htm
    [5]
    Rana G, Katerji N.Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate:A review.European Journal of Agronomy, 2000, 13(2):125-153. https://www.researchgate.net/profile/Katerji_Nader/publication/222647161_Measurement_and_estimation_of_actual_evapotranspiration_in_the_field_under_Mediterranean_climate_A_review/links/00b7d53bbc55441918000000.pdf?origin=publication_detail
    [6]
    Ding R, Kang S, Li F, et al.Evapotranspiration measurement and estimation using modified Priestley-Taylor model in an irrigated maize field with mulching.Agricultural and Forest Meteorology, 2013, 168:140-148. doi:  10.1016/j.agrformet.2012.08.003
    [7]
    Kjaersgaard J H, Plauborg F, Mollerup M, et al.Crop coefficients for winter wheat in a sub-humid climate regime. Agric Water Manag, 2008, 95(8):918-924. doi:  10.1016/j.agwat.2008.03.004
    [8]
    王石立, 娄秀荣, 沙奕卓.华北地区小麦水分亏缺状况初探.应用气象学报, 1995, 6(增刊Ⅰ):42-48. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX5S1.005.htm
    [9]
    吕厚荃, 钱拴, 杨霏云.华北地区玉米田实际蒸散量的计算.应用气象学报, 2003, 14(6):722-728. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030691&flag=1
    [10]
    毛飞, 张光智, 徐祥德.参考作物蒸散量的多种计算方法及其结果的比较.应用气象学报, 2000, 11(增刊Ⅰ):128-136. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2000S1016.htm
    [11]
    He B, Oue H, Wang Y, et al.Measurement and modeling of evapotranspiration from an irrigated wheat field in the Hetao Irrigation district of the Yellow River Basin.Journal of Japan Society of Hydrology and Water Resources, 2007, 20(1):8-16. doi:  10.3178/jjshwr.20.8
    [12]
    Kang S Z, Su X L, Tong L, et al.A warning from an ancient oasis:Intensive human activities are leading to potential ecological and social catastrophe.The International Journal of Sustainable Development and World Ecology, 2008, 15(5):440-447. doi:  10.3843/SusDev.15.5:5
    [13]
    Yan H F, Oue H.Application of the two-layer model for predicting transpiration from the rice canopy and water surface evaporation beneath the canopy.Journal of Agricultural Meteorology, 2011, 67(3):89-97. doi:  10.2480/agrmet.67.3.1
    [14]
    Yan H F, Zhang C, Oue H, et al.Comparison of different methods for estimating soil surface evaporation in a bare field.Meteorology and Atmospheric Physics, 2012, 118(3):143-149.
    [15]
    冯建设, 王建源, 王新堂, 等.相对湿润度指数在农业干旱监测业务中的应用.应用气象学报, 2011, 22(6):766-772. doi:  10.11898/1001-7313.20110616
    [16]
    马晓群, 吴文玉, 张辉.农业旱涝指标及在江淮地区监测预警中的应用.应用气象学报, 2009, 20(2):186-194. doi:  10.11898/1001-7313.20090208
    [17]
    Allen R G, Pereira L S, Raes D, et al.Crop Evapotranspiration-guidelines for Computing Crop Water Requirements.Irrigation and Drainage Paper No.56, Food and Agricultural Organization of the United Nations, Rome, 1998.
    [18]
    Gao Y, Duan A, Sun J S, et al.Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping.Field Crops Research, 2009, 111(1-2):65-73. doi:  10.1016/j.fcr.2008.10.007
    [19]
    Shrestha N K, Shukla S.Basal crop coefficients for vine and erect crops with plastic mulchin a sub-tropical region.Agric Water Manag, 2014, 143:29-37. doi:  10.1016/j.agwat.2014.05.011
    [20]
    Zhang C, Yan H F, Shi H B.Study of crop coefficient and the ratio of soil evaporation to evapotranspiration in an irrigated maize field in an arid area of Yellow River Basin in China.Meteorology and Atmospheric Physics, 2013, 121(3-4):207-214. doi:  10.1007/s00703-013-0264-6
    [21]
    Facchi A, Gharsallah O, Corbari C, et al.Determination of maize crop coefficients in humid climate regime using the eddy covariance technique.Agric Water Manag, 2013, 130:131-141. doi:  10.1016/j.agwat.2013.08.014
    [22]
    Shahrokhnia M H, Sepaskhah A R.Single and dual crop coefficients and crop evapotranspiration for wheat and maize in a semi-arid region.Theor Appl Climatol, 2013, 114(3-4):495-510. doi:  10.1007/s00704-013-0848-6
    [23]
    李荣平, 周广胜, 王宇.中国东北玉米农田生态系统非生长季土壤呼吸作用及其对环境因子的响应.科学通报, 2010, 55(13):1247-1254. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201013010.htm
    [24]
    蔡福, 明惠青, 李荣平, 等.动态空气动力学参数对玉米田陆-气通量模拟的影响--以BATSle模型为例.应用生态学报, 2013, 24(8):2265-2273. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201308026.htm
    [25]
    麻雪艳, 周广胜.春玉米最大叶面积指数的确定方法及其应用.生态学报, 2013, 3(8):2596-2603. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201308032.htm
    [26]
    王宇, 周广胜.雨养玉米农田生态系统的蒸散特征及其作物系数.应用生态学报, 2010, 21(3):647-653. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201003018.htm
    [27]
    陈凤, 蔡焕杰, 王健, 等.杨凌地区冬小麦和夏玉米蒸发蒸腾和作物系数的确定.农业工程学报, 2006, 22(5):291-293. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200605041.htm
    [28]
    Alberto M C R, Quilty J R, Buresh R J, et al.Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation.Agric Water Manag, 2014, 136:1-12. doi:  10.1016/j.agwat.2014.01.005
    [29]
    Liu C, Zhang X, Zhang Y.Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter.Agricultural and Forest Meteorology, 2002, 111(2):109-120. doi:  10.1016/S0168-1923(02)00015-1
    [30]
    Liu Y J, Luo Y.A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain.Agric Water Manag, 2010, 97(1):31-40. doi:  10.1016/j.agwat.2009.07.003
    [31]
    Kang S Z, Gu B J, Du T S, et al.Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region.Agric Water Manag, 2003, 59(3):239-254. doi:  10.1016/S0378-3774(02)00150-6
    [32]
    宿梅双, 李久生, 饶敏杰.基于称重式蒸渗仪的喷灌条件下冬小麦和糯玉米作物系数估算方法.农业工程学报, 2005, 21(8):25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200508006.htm
    [33]
    梁文清, 蔡焕杰, 王健.陕西关中地区夏玉米作物系数试验研究.节水灌溉, 2011(12):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-JSGU201112002.htm
    [34]
    Piccini G, Ko J, Marek T, et al.Determination of growth-stage-specific crop coefficient (Kc) of maize and sorghum.Agric Water Manag, 2009, 96(12):1698-1704. doi:  10.1016/j.agwat.2009.06.024
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(1)

    Article views (3224) PDF downloads(836) Cited by()
    • Received : 2015-03-05
    • Accepted : 2015-06-26
    • Published : 2015-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint