Zhang Zhiyan, Deng Xuejiao, Wang Baomin, et al. The optimization of visibility monitoring network in Guangdong. J Appl Meteor Sci, 2015, 26(6): 714-724. DOI:  10.11898/1001-7313.20150608.
Citation: Zhang Zhiyan, Deng Xuejiao, Wang Baomin, et al. The optimization of visibility monitoring network in Guangdong. J Appl Meteor Sci, 2015, 26(6): 714-724. DOI:  10.11898/1001-7313.20150608.

The Optimization of Visibility Monitoring Network in Guangdong

DOI: 10.11898/1001-7313.20150608
  • Received Date: 2015-03-13
  • Rev Recd Date: 2015-07-23
  • Publish Date: 2015-11-30
  • Visibility is an important indicator to measure the atmospheric transparency conditions, which not only reflects the regional air quality conditions, but also closely relates to human life. Under current visibility conditions, it is crucial to implement an extensive long term stations for visibility monitoring network to track changes in visibility and determine causal mechanism for the visibility impairment in the region. The visibility observation network in Guangdong includes artificial monitoring network and the visibility sensor network. Artificial visibility observation is carried out at 86 meteorological stations every day, instrument observation is carried out at 39 stations, and the spatial distribution of stations is intensive but quite uneven. Therefore, a new method is carried out aiming at the optimization the overall arrangement of visibility monitoring network.
        Based on the dataset (daily visibility and relative humidity from the 86 meteorological stations in Guangdong), the method can be applied to optimization of the overall arrangement of the establishing operational visibility sensor network in Guangdong, which will substitute the artificial monitoring network. The figure-of-merit (FOM) and the spheres of influence (SOI) are calculated, and the most desirable location is ranked and identified using the resultant FOM field. The spatial coverage for each of stations is determined by the SOI. The determination of the minimum number of stations required is carried out by deleting lower ranking stations if more than 50% of its effecting area is covered by higher ranking stations. Besides, taking the local terrain, background stations, and other factors into account, it's suggested 51 stations are required.
        Above results can be applied in establishing operational visibility sensor network in Guangdong, which will substitute the artificial monitoring network. The related methods are also applicable to the overall arrangement for monitoring network of other variables.
  • Fig. 1  The fitting chart of aerosol growth factor in PRD region (from reference[20])

    Fig. 2  The distribution of visibility monitoring stations in Guangdong

    Fig. 3  The spatial distribution of mean visibility from 2009 to 2011 in Guangdong

    Fig. 4  The spatial distribution of mean annual visibility in Guangdong (a)2009, (b)2010, (c)2011

    Fig. 5  The spatial distribution of monthly average visibility in Guangdong from 2009 to 2011

    Fig. 6  The spatial distribution of FOM in Guangdong (unit:km)

    Fig. 7  The comparison diagram of visibility spatial distribution in Guangdong from 2009-2011 (a) the visibility spatial distribution of the selected 43 stations, (b) the visibility spatial distribution of pristine 86 stations, (c) the difference value

    Fig. 8  The comparison diagram of monthly visibility spatial distribution in Guangdong

    Fig. 9  The distribution of suggested visibility meter stations

    Fig. 10  The comparison of visibility spatial distribution in Guangdong from 2009 to 2011 (a) the visibility spatial distribution of the improved 51 stations, (b) the visibility spatial distribution of pristine 86 stations, (c) the difference value

    Table  1  The FOM value of 86 stations in Guangdong and their representative stations

    站点 排序* 此站点能代表的站点名称 (挑选出SOI值大于0.7的站点) FOM指数
    四会 1 广宁、高要、三水 6.4664
    斗门 2 罗定、鹤山、开平、新会、恩平、台山、顺德、中山、珠海、深圳、湛江、阳江、上川岛、徐闻 7.2201
    新会 3 高要、南海、东莞、罗定、阳春、新兴、云浮、鹤山、开平、恩平、台山、顺德、中山、斗门、珠海、深圳、湛江、阳江、上川岛 8.8752
    湛江 4 鹤山、新会、恩平、台山、中山、斗门、珠海、深圳、廉江、吴川、阳江、电白、上川岛、雷州、徐闻 8.9335
    阳江 5 罗定、阳春、鹤山、开平、新会、恩平、台山、顺德、中山、斗门、珠海、深圳、廉江、吴川、湛江、电白、上川岛、雷州、徐闻 9.1442
    台山 6 高要、南海、东莞、罗定、阳春、新兴、云浮、鹤山、开平、新会、恩平、顺德、中山、斗门、珠海、深圳、湛江、阳江、上川岛、徐闻 9.4518
    珠海 7 鹤山、新会、台山、顺德、中山、斗门、深圳、湛江、阳江、上川岛、徐闻 10.0547
    从化 8 清远、广州、增城 10.1886
    佛岗 9 英德、连平、新丰、清远、广州、龙门、河源 10.2230
    中山 10 高要、南海、东莞、罗定、阳春、新兴、云浮、鹤山、开平、新会、恩平、台山、顺德、斗门、珠海、深圳、湛江、阳江、上川岛、徐闻 10.2513
    乐昌 11 10.3661
    开平 12 高要、南海、东莞、罗定、阳春、新兴、云浮、鹤山、新会、恩平、台山、顺德、中山、斗门、深圳、阳江、上川岛 10.3798
    汕头 13 潮州、饶平、普宁、揭阳、潮阳、澄海、汕尾 10.3979
    高要 14 曲江、英德、封开、德庆、怀集、广宁、四会、三水、广州、南海、东莞、罗定、阳春、新兴、云浮、鹤山、开平、新会、恩平、台山、顺德、番禺、中山 10.4827
    广宁 15 曲江、英德、怀集、四会、高要、三水、广州 10.5480
    增城 16 清远、从化、广州、龙门 10.5652
    番禺 17 英德、高要、三水、广州、南海、东莞、博罗、鹤山、顺德 10.6373
    顺德 18 英德、郁南、高要、三水、广州、南海、东莞、博罗、阳春、新兴、云浮、鹤山、开平、新会、恩平、台山、番禺、中山、斗门、珠海、深圳、阳江 10.6439
    深圳 19 东莞、鹤山、开平、新会、台山、顺德、中山、斗门、珠海、惠东、湛江、阳江、上川岛 10.7005
    揭阳 20 揭西、潮州、普宁、汕头、汕尾 10.7347
    始兴 21 南雄、曲江 10.7583
    广州 22 佛岗、英德、广宁、四会、高要、三水、花都、从化、南海、东莞、河源、增城、博罗、惠阳、丰顺、鹤山、顺德、番禺 10.9177
    花都 23 三水、清远、广州 10.9181
    南雄 24 仁化、始兴、连平、河源 11.0811
    澄海 25 潮州、饶平、汕头 11.0946
    东莞 26 高要、三水、广州、南海、新兴、云浮、鹤山、开平、新会、恩平、台山、顺德、番禺、中山、深圳 11.2866
    云浮 27 封开、郁南、德庆、高要、三水、南海、东莞、罗定、阳春、新兴、鹤山、开平、新会、恩平、台山、顺德、中山 11.9637
    茂名 28 12.0518
    曲江 29 连南、连州、英德、始兴、怀集、广宁、高要、三水、河源 12.0922
    怀集 30 连州、曲江、英德、封开、广宁、高要、三水 12.1083
    新兴 31 德庆、高要、南海、东莞、罗定、阳春、云浮、鹤山、开平、新会、恩平、台山、顺德、中山 12.1481
    南海 32 德庆、高要、三水、广州、东莞、新兴、云浮、鹤山、开平、新会、恩平、台山、顺德、番禺、中山 12.2346
    连山 33 连南 12.2383
    连南 34 连州、连山、阳山、曲江 12.2427
    鹤山 35 高要、三水、广州、南海、东莞、罗定、阳春、新兴、云浮、开平、新会、恩平、台山、顺德、番禺、中山、斗门、珠海、深圳、湛江、阳江、上川岛 12.2517
    汕尾 36 揭西、丰顺、潮州、普宁、揭阳、汕头、惠来、陆丰 12.2610
    清远 37 佛岗、英德、花都、从化、增城 12.2695
    英德 38 仁化、阳山、乳源、曲江、佛岗、连平、新丰、怀集、广宁、高要、三水、清远、广州、佛山、河源、顺德、番禺 12.2908
    恩平 39 高要、南海、东莞、罗定、阳春、新兴、云浮、鹤山、开平、新会、台山、顺德、中山、斗门、廉江、湛江、阳江、上川岛 12.3029
    封开 40 郁南、德庆、怀集、高要、罗定、云浮 12.3046
    罗定 41 封开、郁南、高要、新兴、云浮、鹤山、开平、恩平、台山、中山、斗门、廉江、阳江 12.3618
    惠来 42 汕尾 12.3855
    连州 43 连南、阳山、曲江、怀集 12.3871
    三水 44 曲江、英德、德庆、怀集、广宁、四会、高要、花都、广州、南海、东莞、云浮、鹤山、顺德、番禺 12.3932
    德庆 45 封开、郁南、高要、三水、南海、新兴、云浮、顺德 12.4721
    揭西 46 丰顺、普宁、揭阳、汕尾 12.4876
    吴川 47 湛江、阳江、电白 12.6377
    郁南 48 封开、德庆、罗定、云浮 12.6483
    普宁 49 揭西、揭阳、汕头、汕尾 12.7815
    五华 50 12.8729
    惠阳 51 广州、河源、博罗 12.9316
    上川岛 52 鹤山、开平、新会、恩平、台山、中山、斗门、珠海、深圳、湛江、阳江、雷州、徐闻 13.0361
    龙门 53 佛岗、新丰、增城 13.9223
    大埔 54 14.6399
    新丰 55 仁化、佛岗、英德、连平、龙门、河源 15.1014
    潮州 56 丰顺、饶平、揭阳、汕头、潮阳、澄海、汕尾 15.1312
    连平 57 仁化、南雄、乳源、佛岗、英德、翁源、新丰 15.1674
    乳源 58 仁化、英德、连平 15.2500
    陆丰 59 汕尾 15.2665
    惠东 60 龙川、深圳 15.4987
    兴宁 61 龙川、梅县 15.5267
    翁源 62 连平 15.7310
    丰顺 63 广州、揭西、潮州、汕尾、 15.7658
    廉江 64 罗定、阳春、恩平、遂溪、高州、湛江、阳江、电白、徐闻 15.9780
    博罗 65 广州、惠阳、顺德、番禺 16.3604
    梅县 66 兴宁 16.3940
    潮阳 67 潮州、汕头 16.6128
    仁化 68 南雄、乳源、英德、连平、新丰 16.6348
    和平 69 龙川 16.8199
    河源 70 南雄、曲江、佛岗、英德、新丰、龙川、广州、惠阳 17.1331
    遂溪 71 廉江、雷州 17.1537
    电白 72 廉江、吴川、湛江、阳江 17.2018
    南澳 73 17.3649
    平远 74 蕉岭 17.4526
    徐闻 75 台山、中山、斗门、珠海、深圳、湛江、阳江、上川岛 18.2115
    海丰 76 18.4305
    雷州 77 遂溪、湛江、阳江、上川岛 18.5907
    龙川 78 和平、兴宁、河源、惠东 19.6493
    紫金 79 19.7063
    蕉岭 80 平远 19.8054
    信宜 81 20.0784
    阳山 82 连南、连州、英德 20.5784
    饶平 83 潮州、汕头、澄海 22.2270
    化州 84 22.3586
    阳春 85 高要、新兴、云浮、鹤山、开平、恩平、台山、顺德、中山、廉江、阳江 22.4352
    高州 86 廉江 24.9094
    注:*按FOM指数从小到大排序。
    DownLoad: Download CSV
  • [1]
    [2]
    黄健, 吴兑, 黄敏辉, 等.1954-2004年珠江三角洲大气能见度变化趋势.应用气象学报, 2008, 19(1):61-70. doi:  10.11898/1001-7313.20080111
    [3]
    廖国莲, 曾鹏, 郑凤琴, 等.1960-2009年广西霾日时空变化特征.应用气象学报, 2011, 22(6):732-739. doi:  10.11898/1001-7313.20110611
    [4]
    杜传耀, 马舒庆, 杨玲, 等.双光路能见度测量方法和试验.应用气象学报, 2014, 25(5):610-617. doi:  10.11898/1001-7313.20140510
    [5]
    马舒庆, 徐振飞, 毛节泰, 等.以黑体为目标的能见度参考标准试验研究.应用气象学报, 2014, 25(2):129-134. doi:  10.11898/1001-7313.20140201
    [6]
    司鹏, 高润祥.天津雾和霾自动观测与人工观测的对比评估.应用气象学报, 2015, 26(2):240-246. doi:  10.11898/1001-7313.20150212
    [7]
    Drozdov O A, Shepelevski A A.The theory of interpolation in a stochastic field of meteorological elements and its application to meteorological elements and its application to meteorological map and network rationalization problems.Trudy NiuGugms Series, 1946, 1:13.
    [8]
    程勇, 杨玲, 行鸿彦, 等.气象台站网布局优化研究综述.南京信息工程大学学报:自然科学版, 2011, 3(6):511-518. http://www.cnki.com.cn/Article/CJFDTOTAL-NJXZ201106001.htm
    [9]
    Gandin L S.The Planning of Meteorological Station Networks (Technical Note No.111).Geneva:WMO No.265, 1970.
    [10]
    王庆安, 顾亚进.气象台站网设计的探讨.气象科学, 1988(3):72-80. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ198704014.htm
    [11]
    赵瑞霞, 李伟, 王玉彬, 等.空间结构函数在北京地区气象观测站网设计中的应用.应用气象学报, 2007, 18(1):94-101. doi:  10.11898/1001-7313.20070117
    [12]
    Liu M K, Avrin J, Pollack R I, et al.Methodology for designing air quality moniroring networks:Ⅰ.Theoretical aspects.Environment Monitoring and Assessment, 1986, 6:1-11. doi:  10.1007/BF00394284
    [13]
    Mcelroy J L, Behar J V, Meyers T C, et al.Methodology for designing air quality moniroring networks:ⅡApplication to LasVegas, Nevada, for carbon monoxide.Environment Monitoring and Assessment, 1986, 6:13-34. doi:  10.1007/BF00394285
    [14]
    Abdullah M, Tahir H.A holistic approach for optimal design of air quality monitoring network expansion in an urban area.Atmos Environ, 2010, 44:432-440. doi:  10.1016/j.atmosenv.2009.07.045
    [15]
    Waggoner A P, Weiss R E, Ahlquist N C, et al.Optical characteristics of atmospheric aerosols.Atmos Environ, 1981, 15(10/11):1891-1909.
    [16]
    Solomon P A, Moyers J L.Use of a high volume dichotomous virtual impactor to estimate light extinction due to carbon and related species in the Phoenix haze.Science of the Total Environment, 1984, 36:169-175. doi:  10.1016/0048-9697(84)90262-6
    [17]
    Sisler J F, Malm W C.The relative importance of soluble aerosols to spatial and season trends of impaird visibility in the United States.Atmospheric Environment, 1994, 28:851-862. doi:  10.1016/1352-2310(94)90244-5
    [18]
    Deng X J, Wu D, Yu J Z, et al.Characterizations of secondary aerosol and its extinction effects on visibility over Pearl River Delta Region.Journal of the Air & Waste Management Association, 2013, 63(9):1012-1021, doi: 10.1080/10962247.2013.782927.
    [19]
    邓雪娇. 广州气溶胶的特征及其对能见度与地面臭氧变化的影响. 北京: 北京大学, 2008.
    [20]
    张芷言, 王宝民, 邓雪娇, 等.广州地区PM1质量浓度对能见度的影响以及气溶胶吸湿增长因子1-3.中科院大学学报, 2014, 31(3): 397-402. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201403015.htm
  • 加载中
  • -->

Catalog

    Figures(10)  / Tables(1)

    Article views (2690) PDF downloads(672) Cited by()
    • Received : 2015-03-13
    • Accepted : 2015-07-23
    • Published : 2015-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint