Liu Yan, Xue Jishan, Zhang Lin, et al. Verification and diagnostics for data assimilation system of global GRAPES. J Appl Meteor Sci, 2016, 27(1): 1-15. DOI:  10.11898/1001-7313.20160101.
Citation: Liu Yan, Xue Jishan, Zhang Lin, et al. Verification and diagnostics for data assimilation system of global GRAPES. J Appl Meteor Sci, 2016, 27(1): 1-15. DOI:  10.11898/1001-7313.20160101.

Verification and Diagnostics for Data Assimilation System of Global GRAPES

DOI: 10.11898/1001-7313.20160101
  • Received Date: 2015-03-29
  • Rev Recd Date: 2015-09-04
  • Publish Date: 2016-01-31
  • Numerical Weather Prediction Center of China Meteorological Administration has upgraded the global GRAPES (Global/Regional Assimilation and PrEdiction System) variation data assimilation system. The new data assimilation system employs the same coordinate, grids and atmospheric state variables as those of the GRAPES model. It can reduce analysis errors due to the interpolation and variable transformations, and also provide basics for developing GRAPES four-dimension variation assimilation system. Some key characteristics of the new global GRAPES data assimilation system are discussed, and then the performance is evaluated in detail, by comparing with observations, analysis or reanalysis data from advanced operational numerical weather prediction centers, and the medium-range forecast from background and analysis fields and different forecast models. Some guidelines for further optimizing the system is also given based on diagnosis and quantitatively estimating the impact of observations. Results show that the GRAPES data assimilation system assimilates conventional observations, satellite radiances and radio occultation observations effectively, making analyses closer to the real atmosphere and improving the forecast skill. The analysis of GRAPES are similar to those of European Centre for Medium-Range Weather Forecasts and National Center for Environmental Prediction at the large-scale circulation fields. However, some differences still remains, which actually expose issues of GRAPES. These differences are related to overlarge contributions from radiosonde, surface, ships, aircraft and radio occultation observations, and the relatively weaker influence of satellite radiance observations.There is broad consensus among the global numerical weather prediction centers that these types of observations tend to be the highest-ranked contributors to forecast skill: Microwave temperature sounder, hyper-spectral infrared sounder, radiosondes, aircraft observations, radio occultation and atmospheric motion vectors, although not necessarily uniformly in this order. However, contributions of the microwave temperature sounder and hyper-spectral infrared sounder in GRAPES are not dominant, because GRAPES still uses less radiance data, and on the other hand, the bias correction effect is not so good.Contributions of wind and humidity observation are less in GRAPES. Additionally, biases in regions of the Tibet Plateau, upper levels of the model and the tropics are relatively larger compared to observations and the reanalysis, which are related to the treatment method of topography and upper boundary of model. To gain better analysis and forecast skill, there is a requirement to place more emphasis on the above issues.
  • Fig. 1  Probability of da and db for TEMP, AIREP, SYNOPS, SHIPS, SATOB, RO and AMSUM-A of NOAA18 satellite

    Fig. 2  Distribution of mean and root mean square of BMO and AMO for radionsonde pressure observations at 500 hPa

    Fig. 3  Profile of mean and root mean square of BMO and AMO for the radiosonde observation in the Tibet Plateau for pressure (a), relative humidity (b), u wind (c), v wind (d)

    Fig. 4  Probability da and db of atmospheric motion vectors observations over the Tibet Plateau

    Fig. 5  Time evolution of correlation coefficients and root mean square errors between G-3DVar and ERA-Interim at 850, 500 hPa and 250 hPa for the Northern Hemisphere and the Southern Hemisphere

    (a) correlation coefficient of the Northern Hemisphere, (b) correlation coefficient of the Southern Hemiphere, (c) root mean square error of the Northern Hemisphere, (d) root mean square error of the Southern Hemiphere

    Fig. 6  Mean and root mean square error of GRAPES geopertential height, temperature and zonal wind analysis compared to ERA_Interim (GRAPES minus ERA-Interim) in the Northern Hemisphere, the Southern Hemisphere and the tropics

    Fig. 7  Analysis comparisons between GRAPES and ERA_Interim for geopertential height (unit:gpm)(a), temperature (unit:K)(b), specific humidity (unit:kg·kg-1)(c), u wind (unit:m·s-1)(d) and v wind (unit:m·s-1)(e)

    Fig. 8  Anomaly correlation coefficient (ACC) of the 500 hPa height for the 8-day forecast in the Northern Hemisphere (a), the Southern Hemisphere (b) and the East Asia (c)

    Table  1  Statistics of mean and variance for innovation and residual

    观测 要素 ξb ξa σb σa rab
    探空 气压/hPa -0.4014 -0.0217 0.8037 0.4522 0.32
    u分量/(m·s-1) -0.006 0.0054 3.7618 2.812 0.56
    v分量/(m·s-1) -0.0202 0.014 3.6782 2.7799 0.57
    相对湿度/% 3.0262 -1.0595 22.2519 15.7933 0.50
    地面 地表气压/hPa -0.2361 -0.021 0.941 0.6754 0.52
    船舶 地表气压/hPa -0.1467 0.0107 1.0522 0.7872 0.56
    云导风 风的u分量/(m·s-1) 0.3533 0.1679 3.823 2.8708 0.56
    飞机 温度/K 0.4076 0.1766 1.4039 1.1394 0.66
    u分量/(m·s-1) 0.0121 -0.0123 3.6421 2.7596 0.57
    v分量/(m·s-1) -0.1173 -0.0149 3.6005 2.7251 0.57
    掩星 折射率/% -0.00073 -0.00048 0.00013 0.00005 0.15
    微波温度计
    (NOAA18)
    通道5亮温/K 0.1113 0.0755 0.2291 0.2119 0.86
    通道6亮温/K -0.0567 0.0776 0.1976 0.1612 0.67
    通道7亮温/K 0.0377 0.0179 0.2105 0.1793 0.73
    通道8亮温/K 0.0945 0.0709 0.2319 0.2057 0.79
    通道9亮温/K 0.2925 0.1876 0.2803 0.2126 0.58
    通道10亮温/K 0.4785 0.4873 0.2485 0.2087 0.70
    AIRS 通道平均亮温/K 0.1492 0.1117 0.52 0.48 0.85
    DownLoad: Download CSV

    Table  2  Statistics information of background check

    观测 要素 资料使用
    率/%
    系统指定
    的αqc
    本文式 (4) 统
    计的αqc
    质控范围
    探空 气压/hPa 98 5.0 2.9 [-2.6, 1.7] (400~850 hPa)
    u, v分量/(m·s-1) 100 9.0 2.5 [-7.5, 7.5]
    相对湿度/% 97 3.0 1.6 [-41, 45]
    船舶 地表气压/hPa 73 5.0 3.7 [-2.1, 2.3]
    地面 地表气压/hPa 73 3.0 2.4 [-2.1, 1.7]
    云导风 u, v分量/(m·s-1) 99 5.0 1.5 [-7.3, 8.0]
    飞机 u, v分量/(m·s-1) 99 4.0 1.8 [-7.3, 7.3]
    温度/K 99 4.0 2.2 [-2.4, 3.2]
    掩星 折射率/% 90 4.0 2.0 [-1.2, 1.2]
    微波温度计 AMSU-A亮温/K 74 2.0 2.0
    高光谱 AIRS亮温/K 8 2.0
    DownLoad: Download CSV
  • [1]
    Talagrand O.A posteriori Verification of Analysis and Assimilation Algorithms//Proceedings of the ECMWF Workshop on Diagnosis of Data Assimilation Systems.1998:17-28.
    [2]
    Desroziers G, Berre L, Chapnik B, et al. Diagnosis of observation, background and analysis-error statistics in observation space.Q J R Meteorol Soc, 2005, 131:3385-3396. doi:  10.1256/qj.05.108
    [3]
    庄世宇, 薛纪善, 朱国富, 等.GRAPES全球三维变分同化系统——基本设计方案与理想试验.大气科学, 2005, 29(6):872-884. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506003.htm
    [4]
    薛纪善, 陈德辉.数值预报系统GRAPES的科学设计与应用北京:科学出版社, 2008.
    [5]
    Xue J S.Progresses of researches on numerical weather prediction in China:1999-2002.Adv Atmos Sci, 2004, 21(3):467-474. doi:  10.1007/BF02915573
    [6]
    薛纪善.新世纪初我国数值天气预报的科技创新研究.应用气象学报, 2006, 17(5):602-610. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200605103&flag=1
    [7]
    陈德辉, 沈学顺.新一代数值预报系统GRAPES研究进展.应用气象学报, 2006, 17(6):773-777. doi:  10.11898/1001-7313.20060614
    [8]
    薛纪善, 庄世宇, 朱国富, 等.GRAPES新一代全球/区域变分同化系统研究.科学通报, 2008, 53(20):2408-2417. doi:  10.3321/j.issn:0023-074X.2008.20.003
    [9]
    黄丽萍, 伍湘君, 金之雁.GRAPES模式标准初始化方案设计与实现.应用气象学报, 2005, 16(3):374-384. doi:  10.11898/1001-7313.20050312
    [10]
    马旭林, 庄照荣, 薛纪善, 等.GRAPES非静力数值预报模式的三维变分资料同化系统的发展.气象学报, 2009, 67(1):50-60. doi:  10.11676/qxxb2009.006
    [11]
    Xue Jishan, Zhang Hua, Zhu Guofu, et al.Development of 3D Variational Assimilation System for ATOVS Data in China//Proceedings of the Thirteenth International TOVS Study Conference, 2003:30-36.
    [12]
    朱国富, 薛纪善, 张华, 等.GRAPES变分同化系统中卫星辐射率资料的直接同化.科学通报, 2008, 53(20):2424-2427. doi:  10.3321/j.issn:0023-074X.2008.20.005
    [13]
    Liu Yan, Xue Jishan.Assimilation of global navigation satellite radio occultation observations in GRAPES:Operational implementation.J Meteor Res, 2014, 28(6), doi: 10.1007/s13351-014-4028-0.
    [14]
    Lynch P, Huang X Y.Initialization of the HIRLAM model using a digital filter.Mon Wea Rev, 1992, 120:1019-1034. doi:  10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2
    [15]
    Hong S Y, Lim J O J.The WRF single-moment 6-class microphysics scheme (WSM6).J Korean Meteor Soc, 2006, 42:129-151. http://www.docin.com/p-765016479.html
    [16]
    Mlawer E J, Taubman S J, Brown P D, et al.Radiative transfer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the longwave.J Geophys Res, 1997, 102 (D14):16663-16682. doi:  10.1029/97JD00237
    [17]
    Troen I, Mahrt L.A simple model of the atmospheric boundary layer sensitivity to surface evaporation.Bound-Layer Meteor, 1986, 37:129-148. doi:  10.1007/BF00122760
    [18]
    Arakawa A, Schubert W H.Interaction of a cumulus cloud ensemble with the large-scale environment.J Atmos Sci, 1974, 31:674-701. doi:  10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
    [19]
    Dee D P, Uppala S M.The ERA-Interim reanalysis:configuration and performance of the data assimilation system.Q J R Meteorol Soc, 2011, 137:553-597. doi:  10.1002/qj.v137.656
    [20]
    Eugenia Kalnay.大气模式、资料同化和可预报性.北京:气象出版社, 2005.
    [21]
    薛谌彬, 何财福, 龚建东, 等.静止卫星云导风的质量控制及在同化中的应用.应用气象学报, 2013, 24(3):356-364. doi:  10.11898/1001-7313.20130312
    [22]
    王瑞春, 龚建东, 张林.GRAPES变分同化系统中动力平衡约束的统计求解.应用气象学报, 2012, 23(2):129-138. doi:  10.11898/1001-7313.20120201
    [23]
    王瑞春, 龚建东, 张林, 等.热带风压场平衡特征及其对GRAPES同化预报的影响研究Ⅰ.平衡特征分析.大气科学, 2015, doi: 10.3878/j.issn.1006-9895.1412.14233.
    [24]
    薛纪善.气象卫星资料同化的科学问题与前景.气象学报, 2009, 67(6):903-911. doi:  10.11676/qxxb2009.088
    [25]
    任强, 董佩明, 薛纪善.台风数值预报中受云影响微波卫星资料的同化试验.应用气象学报, 2009, 20(2):137-146. doi:  10.11898/1001-7313.20090202
    [26]
    Geer A, Baordo F, Bormann N, et al.Assimilation of Water Vapour, Cloud and Precipitation from microwave sounders.http://www.ecmwf.int/sites/default/files/geer_allsky_sounders_new.pdf, 2014, ECMWF annual simian.
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(2)

    Article views (4510) PDF downloads(713) Cited by()
    • Received : 2015-03-29
    • Accepted : 2015-09-04
    • Published : 2016-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint