Chang Yu. Observational analysis of mesoscale rain cluster during typical torrential rain processes in Inner Mongolia. J Appl Meteor Sci, 2016, 27(1): 56-66. DOI:  10.11898/1001-7313.20160106.
Citation: Chang Yu. Observational analysis of mesoscale rain cluster during typical torrential rain processes in Inner Mongolia. J Appl Meteor Sci, 2016, 27(1): 56-66. DOI:  10.11898/1001-7313.20160106.

Observational Analysis of Mesoscale Rain Cluster During Typical Torrential Rain Processes in Inner Mongolia

DOI: 10.11898/1001-7313.20160106
  • Received Date: 2015-07-17
  • Rev Recd Date: 2015-10-20
  • Publish Date: 2016-01-31
  • Inner Mongolia Autonomous Region is located in the northern frontier of China, where characteristics of torrential rain are local and convective, and the strong precipitation duration is short. High temporal and spatial data such as the satellite cloud, lighting data and automatic weather station data are very effective tools for discovering and monitoring mesoscale convective sgstem (MCS) continuously. But these approaches are not often carried out in Inner Mongolia. In view of this, using black body temperature (TBB) data of FY-2E, lightning data, automatic weather station data and hourly precipitation data, characteristics of mesoscale rain cluster (RC) of seven typical torrential rain cases are studied in Inner Mongolia from June to August during 2009-2013. Results show that in Inner Mongolia, hourly rain intensity of torrential rain processes can reach torrential rain or heavy torrential rain in 1 h or 3 h, and 80% RC activity is caused by MCS. The strong precipitation is closely related with the terrain, and the highest value occurs in the southward mountain facing warm moist airflow, which are favorable for the development of MCS. The highest peak of strong precipitation occurs in the afternoon, and the secondary peak occurs in the midnight and early morning. It has important presage function with regard to intensity and development of RC that the TBB no more than-52℃ cold-cloud shield centroid of MCS and high value center of cloud-to-ground lightning flashes density (CGD). RC in MCS of cold front cloud system gives expression to generation and extinction in the same region, the TBB no more than-52℃ cold-cloud shield centroid is small and last for 2-8 h, CGD increases slowly and has lower frequency. RC occurs jumpily in cold cloud area or the side cold air flowing into in MCS of the vortex clouds system, the TBB no more than-62℃ cold-cloud shield centroid emerge and last for 24 h, CGD increases rapidly and occur with higher frequency. RC is located in right side of coldest cloud of forward MCS where the cold air flows into. But the region where MCS shifts out exist RC caused by stratiform clouds. Approximately 60% RC of seven cases is associated with cloud-to-ground lightning flashes activities. RC appears around the highest value of CGD. The moment of maximum CGD value indicates maximum precipitation and the maturity stage of MCS in the future of 1-3 h. When CGD decrease or increase is not obvious, the rainfall intensity of RC weakens, and MCS is in the dissipation phase. Mesoscale convergence line on the dense surface wind field is prior to the MCS and RC, and the local convergence caused by mesoscale convergence line can be used as starting mechanism of MCS development.
  • Fig. 1  Total frequencies of torrential rain stations (a) and total frequencies of heavy rainfall (b) of seven torrential rain processes

    Fig. 2  The longest duration of heavy rainfall (unit:h)(a) and maximum total precipitation of heavy rainfall (unit:mm, precipitation of the shaded is no less than 50 mm)(b) of seven torrential rain processesq

    Fig. 3  Maximum precipitation of heavy rainfall (a) and daily station-time variation of heavy rainfall (b) of seven torrential rain processes

    Fig. 4  TBB (the shaded) and 1 h precipitation (the contour, unit:mm, the minimun is 10 mm, interval is 10 mm) from 06:00 BT to 1300 BT on 18 Jul 2011 of Case 2

    Fig. 5  TBB (the shaded) and 1 h precipitation (the contour, unit:mm, the minimum is 10 mm, interval is 10 mm) from 1400 BT 20 Jun to 0800 BT 21 Jul in 2012 of Case 5

    Fig. 6  CG lightning density (the shaded) and 1 h precipitation (the contour, unit:mm, the minimun is 10 mm, interval is 10 mm) from 0600 BT to 1300 BT on 18 Jul 2011 of Case 2 (the dotted rectangle represents the target region of positive and negative CG lighting)

    Fig. 7  CG lightning density (the shaded) and 1 h precipitation (the contour unit:mm, the minimum is 10 mm, interval is 10 mm) from 1400 BT to 2300 BT on 20 Jul 2012 of Case 5 (the dotted rectangle represents the target region of positive and negative CG lighting)

    Fig. 8  The percentage of positive and negative CG lightning and 1 h precipitation

    (a)18 Jul 2011, (b)20 Jul 2012

    Fig. 9  Wind field of automatic weather stations (the barb), convergence line (double solid lines), TBB (the shaded) and 1 h precipitation (the contour, unit:mm, the minimum is 10 mm, interval is 10 mm) from 1400 BT 20 Jul to 0800 BT 21 Jul in 2012 of Case 5

    Table  1  Influence time, occurring area, intensity and rain cluster characteristics of torrential rain cases

    个例编号 时间 持续日数/d 影响地区 暴雨站次 原地生消雨团过程 移动雨团过程
    个例1 2009-08-16—20 4 5 9 3 0
    个例2 2011-07-15—21 6 3 6 2 1
    个例3 2011-07-23—27 4 4 10 4 1
    个例4 2012-06-24—29 5 3 4 2 2
    个例5 2012-07-19—22 3 8 27 0 3
    个例6 2012-07-24—31 7 9 18 2 2
    个例7 2013-07-14—16 3 7 19 1 2
    DownLoad: Download CSV
  • [1]
    陶诗言, 赵思雄, 周晓平, 等.天气学和天气预报的研究进展.大气科学, 2003, 27(4):451-467. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200304002.htm
    [2]
    赵思雄, 张立生, 孙建华.2007年淮河流域致洪暴雨及其中尺度系统特征的分析.气候与环境研究, 2007, 12(6):713-727. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200706002.htm
    [3]
    黄勇, 覃丹宇.舟曲泥石流天气过程中云团合并的卫星观测.应用气象学报, 2013, 24(1):87-98. doi:  10.11898/1001-7313.20130109
    [4]
    苏爱芳, 孙景兰, 谷秀杰, 等.河南省对流性暴雨云系特征与概念模型.应用气象学报, 2013, 24(2):219-229. doi:  10.11898/1001-7313.20130210
    [5]
    徐文慧, 倪允琪.登陆台风环流内的一次中尺度强对流过程.应用气象学报, 2009, 20(3):267-275. doi:  10.11898/1001-7313.20090302
    [6]
    易笑园, 李泽椿, 孙晓磊, 等.渤海西岸暴雨中尺度对流系统的结构及成因.应用气象学报, 2011, 22(1):23-34. doi:  10.11898/1001-7313.20110103
    [7]
    孔期, 郑永光, 陈春艳.乌鲁木齐7·17暴雨的天气尺度与中尺度特征.应用气象学报, 2011, 22(1):12-22. doi:  10.11898/1001-7313.20110102
    [8]
    何立富, 周庆亮, 陈涛.“05.6”华南暴雨中低纬度系统活动及相互作用.应用气象学报, 2010, 21(4):385-394. doi:  10.11898/1001-7313.20100401
    [9]
    郭荣芬, 肖子牛, 陈小华, 等.两次西行热带气旋影响云南降水对比分析.应用气象学报, 2010, 21(3):317-328. doi:  10.11898/1001-7313.20100307
    [10]
    Fritsch J M, Kane R J, Chelius C R.The Contribution of Mesoscale Convective Weather Systems to the Warm-season Precipitation in the United States.Amer Meteor Soc, 1986, 25:1333-1345. doi:  10.1175/1520-0450(1986)025%3C1333:TCOMCW%3E2.0.CO;2
    [11]
    Kane R J, Chelius C R, Fritsch J M.Precipitation Characteristics of Mesoscale Convective Weather Systems.Amer Meteor Soc, 1987, 26:1345-1357. doi:  10.1007/978-1-935704-06-5_9?no-access=true
    [12]
    Rigo T, Llasat M C.Analysis of mesoscale convective systems in Catalonia using meteorological radar for the period 1996-2000.Atmos Res, 2007, 83:458-472. doi:  10.1016/j.atmosres.2005.10.016
    [13]
    Price C, Yair Y, Mugnai A, et al.Using lighting data to better understand and predict flash floods in the Mediterranean.Surv Geophys, 2011, 32:733-751. doi:  10.1007/s10712-011-9146-y
    [14]
    Holle R L, Watson A I, López R E, et al.The life cycle of lightning and severe weather in a 3-4 June 1985 pre-storm mesoscale convective system.Mon Wea Rev, 1994, 122:1798-1808. doi:  10.1175/1520-0493(1994)122<1798:TLCOLA>2.0.CO;2
    [15]
    Rutledge S A, MacGorman D R.Cloud-to-ground lightning activity in the 10-11 June 1985 mesoscale convective system observed during the Oklahoma-Kansas PRE-STORM Project.Mon Wea Rev, 1988, 116:1393-1408. doi:  10.1175/1520-0493(1988)116<1393:CTGLAI>2.0.CO;2
    [16]
    张腾飞, 尹丽云, 张杰, 等.云南两次中尺度对流雷暴系统演变和地闪特征.应用气象学报, 2013, 24(2):207-218. doi:  10.11898/1001-7313.20130209
    [17]
    郑栋, 张义军, 孟青, 等.北京地区雷暴过程闪电与地面降水的相关关系.应用气象学报, 2010, 21(3):287-297. doi:  10.11898/1001-7313.20100304
    [18]
    王婷波, 郑栋, 张义军, 等.基于大气层结和雷暴演变的闪电和降水关系.应用气象学报, 2014, 25(1):33-41. doi:  10.11898/1001-7313.20140104
    [19]
    张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.11898/1001-7313.20060504
    [20]
    蒙伟光, 易燕明, 杨兆礼, 等.广州地区雷暴过程云-地闪特征及其环境条件.应用气象学报, 2008, 19(5):611-619. doi:  10.11898/1001-7313.20080513
    [21]
    顾润源, 孙永刚, 韩经纬, 等.内蒙古自治区天气预报手册.北京:气象出版社, 2012.
    [22]
    常煜, 韩经纬.一次阻塞形势下的内蒙古暴雨过程特征分析.高原气象, 2015, 34(3):741-752. doi:  10.7522/j.issn.1000-0534.2014.00033
    [23]
    Maddox R A.Mesoscale convective complexes.Bull Amer Meteor Soc, 1980, 61(11):1374-1387. doi:  10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
    [24]
    丁一汇, 张建云, 许小峰, 等.暴雨洪涝.北京:气象出版社, 2009.
    [25]
    朱乾根, 林锦瑞, 寿绍文, 等.天气学原理和方法.北京:气象出版社, 1992.
    [26]
    丁一汇.高等天气学.北京:气象出版社, 2008:423-443.
    [27]
    陶诗言.中国之暴雨.北京:科学出版社, 1980:1-255.
    [28]
    Rutledge S A, Houze R A Jr.A diagnostic modeling study of the trailing stratiform region of a midlatitude squall line.J Atmos Sci, 1987, 44(18):2640-2656. doi:  10.1175/1520-0469(1987)044<2640:ADMSOT>2.0.CO;2
    [29]
    Tadesse A, Anagnostou E N.Characterization of warm season convective systems over US in terms of cloud to ground lighting, cloud kinematics, and precipitation.Atmos Res, 2009, 91:36-46. doi:  10.1016/j.atmosres.2008.05.009
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(1)

    Article views (2708) PDF downloads(735) Cited by()
    • Received : 2015-07-17
    • Accepted : 2015-10-20
    • Published : 2016-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint