Chen Caizhu, Gao Jianyun, Huang Lina, et al. Effects of atmospheric low-frequency variation on typical persistent heavy rains during pre-flood season in Fujian. J Appl Meteor Sci, 2016, 27(1): 75-84. DOI:  10.11898/1001-7313.20160108.
Citation: Chen Caizhu, Gao Jianyun, Huang Lina, et al. Effects of atmospheric low-frequency variation on typical persistent heavy rains during pre-flood season in Fujian. J Appl Meteor Sci, 2016, 27(1): 75-84. DOI:  10.11898/1001-7313.20160108.

Effects of Atmospheric Low-frequency Variation on Typical Persistent Heavy Rains During Pre-flood Season in Fujian

DOI: 10.11898/1001-7313.20160108
  • Received Date: 2015-02-03
  • Rev Recd Date: 2015-09-22
  • Publish Date: 2016-01-31
  • The daily precipitation data of 66 stations in Fujian and NCEP reanalysis data during 1961-2010 are used to analyze the atmospheric low-frequency (LF) variability responsible for 27 typical persistent heavy rain processes (TPHRP) in Fujian during pre-flood season. Using Butterworth band-pass filtering method, low frequency band signals of 30-60 d intraseasonal oscillation (ISO) are extracted from filtered air circulation time series grid data. A physical conceptual model about the atmospheric LF disturbances during TPHRP is suggested as follows.In the upper troposphere, LF between the Korean Peninsula and the Bohai Gulf is low and weak high system dominates in the west of the Tibet Plateau, together with the subtropical westerly jet (SWJ) core located between the Yangtze River estuary and the East China Sea, leading to the LF divergence over Fujian. These low-frequency systems are relative to the Northeast cold vortex, South Asia high and the subtropical westerly jet core, respectively, which provide high-level divergence dynamic conditions and driving dynamic conditions of vertical circulation for persistent heavy rains.In the middle troposphere, when LF disturbance pattern as double block high enhanced type, the Ural block high enhanced type, the Lake Baikal block high enhanced type, or the Okhotsk Sea block high enhanced type, LF low may maintain over Fujian showing on the weather map as two troughs and one ridge type, two ridges and one trough type, one trough and one ridge type, one ridge and one ridge type, respectively. The cold air from the middle and east influences Fujian, providing continuous cold air for persistent heavy rain processes.In the lower troposphere, there is a LF cyclone over Fujian with its center located in South China Sea (SCS) or south of the Yangtze River. The current of air from subtropical high provide continuous moisture conditions, low level convergence dynamic conditions, instability stratification conditions and maintain low-level vertical circulation dynamic conditions for persistent heavy rain processes.In vapor flux fields, whenever one of the LF disturbance strengthens in the vapor passageways as Somali to the Bay of Bengal, the western flank of the Western Pacific Subtropical High (WPSH) or the westerly transport, the water vapor flux convergence over Fujian will be enhanced, providing continuous water vapor transport. TPHRPs are finally triggered by the abnormal LF circulation configuration from lower to upper troposphere as above with favorable synoptic systems for heavy persisted rains. Because of the LF system with continuous and periodicity, the physical conceptual model provides scientific basis for the extension of the TPHRP forecast in Fujian during pre-flood season.
  • Fig. 1  Composite of 30-60 d low-frequency fields at 200 hPa for typical persistent heavy rain processes

    (a) geopotential height (unit:gpm), (b) zonal wind (unit:m·s-1), (c) divergence (unit:10-6 m·s-1)

    Fig. 2  Categorical composites of low-frequency geopotential height field types at 500 hPa for typical persistent heavy rain processes (unit:gpm)

    (a) the Lake Baikal block high strengthened type, (b) the double block high strengthened type, (c) the Okhotsk Sea block high strengthened type, (d) the Ural block high strengthened type

    Fig. 3  Categorical composites of low-frequency disturbance field types at 850 hPa (shaded for low-frequency vorticity) for typical persistent heavy rain processes

    (a) the wind field of the Yangtze River cyclone low-frequency type, (b) the vorticity field of the Yangtze River cyclone low-frequency type, (c) the wind field of cyclone low-frequency type, (d) the vorticity field of South China Sea cyclone low-frequency type

    Fig. 4  Vertical integrated water vapor flux (the shaded) and vector (unit:g·cm-1·hPa-1·s-1) and water vapor flux divergence (the contour, unit:10-6g·cm-2·hPa-1·s-1)

    (a) vapor transport flue and vector of Somali to the Bay of Bengal, (b) vapor transport flux and vector of southwest to subtropical high, (c) vapor transport flux and vector of the westerly, (d) vapor transport flux divergence of Somali to the Bay of Bengal, (e) vapor transport flux divergence of southwest to subtropical high, (f) vapor transport flux divergence of the westerly

    Fig. 5  Vertical meridional circulation field along 115°-120°E of typical persistent heavy rain processes

    (the shaded is for vertical velocity, the stream is for meridional wind speed and vertical velocity dimensional, unit of meridional wind:m/s, unit of vertical speed:10-3 Pa/s) (a) mean vertical meridional circulation, (b) the case in 1998, (c) the case in 2010

    Fig. 6  Physical concept model of low-frequency disturbance for typical persistent heavy rain processes in Fujian

  • [1]
    谭晶, 王彰贵, 陈荣幸, 等.热带大气低频振荡时空结构与ENSO的关系.气候变化, 2004(4):183-188. http://cdmd.cnki.com.cn/Article/CDMD-10730-2009181762.htm
    [2]
    黄海燕, 何金海, 朱志伟.大气季节内振荡的研究进展及其在延伸期预报中的应用.气象与减灾研究, 2011, 34(3):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HXQO201103002.htm
    [3]
    Madden R A, Julian P R.Detection of a 40-50 day oscillation in the zonal wind in the tropical Pasific.J Atmos Sci, 1971, 28(5):702-708. doi:  10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
    [4]
    徐国强, 藏建升, 周伟灿.1998年京津冀夏季风的低频振荡与降水的特征.应用气象学报, 2001, 12(3):42-51. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010341&flag=1
    [5]
    程胜, 李崇银.北半球冬半年平流层大气低频振荡特征研究.大气科学, 2006, 30(4):660-670. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200604010.htm
    [6]
    李崇银.大气低频振荡.气象, 1993, 19(1):207-209. http://cdmd.cnki.com.cn/Article/CDMD-10300-1013340796.htm
    [7]
    高辉, 陈隆勋, 何金海, 等.亚洲赤道地区大气动能的纬向传播.气象学报, 2005, 63(1):21-29. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200501002.htm
    [8]
    Kemball-Cook Susan, Wang Bin.Equatorial waves and air-sea interaction in the boreal summer intraseasonal oscillation.Journal of Climate, 2001, 14(13):2923-2942. doi:  10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2
    [9]
    Yun Kyung-SookK, Ren Baohua, Ha Kyung.The 30-60 day oscillation in the East Asian summer monsoon and its time-dependent association with the Enso.Tellus, 2009, 61(5):565-578. doi:  10.1111/j.1600-0870.2009.00410.x/abstract
    [10]
    琚建华, 孙丹, 吕俊梅.东亚季风涌对我国东部大尺度降水过程的影响分析.大气科学, 2007, 31(6):1129-1139. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706010.htm
    [11]
    陶诗言, 卫捷.夏季中国南方流域性致洪暴雨与季风涌的关系.气象, 2007, 33(3):10-18. doi:  10.7519/j.issn.1000-0526.2007.03.002
    [12]
    琚建华, 孙丹, 吕俊梅.东亚季风区打气季节内振荡经向与纬向传播特征分析.大气科学, 2008, 32(3):523-529. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200803008.htm
    [13]
    高建芸, 陈彩珠, 黄丽娜, 等.2010年福建前汛期典型持续性暴雨过程的低频特征分析.气象科技进展, 2013, 3(6):38-45. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201301012.htm
    [14]
    章丽娜, 林鹏飞, 熊喆, 等.热带大气季节内振荡对华南前汛期降水的影响.大气科学, 2011, 35(3):560-570. http://cdmd.cnki.com.cn/Article/CDMD-10300-1015579026.htm
    [15]
    Wheeler M C, Hendon H H.An all-season real-time multi variate mjo index:Development of an index for monitoring and prediction.Mon Wea Rev, 2004, 132(8):1917-1932. doi:  10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
    [16]
    丁一汇, 梁萍.基于MJO的延伸期预报.气象, 2010, 36(7):111-122. doi:  10.7519/j.issn.1000-0526.2010.07.018
    [17]
    孙国武, 冯建英, 陈伯民, 等.大气低频振荡在延伸期预报中的应用进展.气象科技进展, 2012, 2(1):12-18. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201201008.htm
    [18]
    王跃男, 陈隆勋, 何金海, 等.夏季青藏高原热源低频振荡对我国东部降水的影响.应用气象学报, 2009, 20(1):37-45. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090405&flag=1
    [19]
    林爱兰, 梁建茵, 谷德军.热带大气季节内振荡对东亚夏季风区的影响及不同时间尺度变化研究进展.热带气象学报, 2006, 24(1):11-19. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200801003.htm
    [20]
    张婷, 魏凤英, 韩雪.华南汛期降水与南半球关键系统低频演变特征.应用气象学报, 2011, 22(3):11-20. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110302&flag=1
    [21]
    周兵, 文继芬.1998年夏季我国东部降水与大气环流异常及其低频特征.应用气象学报, 2007, 18(2):3-10. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070225&flag=1
    [22]
    王遵娅, 丁一汇.夏季长江中下游旱涝年季节内振荡气候特征.应用气象学报, 2008, 19(6):72-77. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080610&flag=1
    [23]
    Krishnamarti T N, Subrahmangam D.The 30-50 day mode at 850mb during MONEX.J Atmos Sci, 1982, 39:2088-2095. doi:  10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2
    [24]
    章嘉基, 葛玲.中长期天气预报基础.北京:气象出版社, 1995:27-35.
    [25]
    黄丽娜, 高建芸, 陈彩珠, 等.福建前汛期持续性强降水的大气低频特征分析.气象, 2014, 40(6):723-732. doi:  10.7519/j.issn.1000-0526.2014.06.009
    [26]
    朱乾根, 林锦瑞, 寿绍文, 等.天气学原理和方法 (第四版).北京:气象出版社, 2007:343-384.
    [27]
    孔春燕, 孙国武, 信飞, 等. 大气低频波与我国东部汛期雨带的研究//第27届中国气象学会年会副热带季风与气候变化分会场论文集, 2010: 453-467.
    [28]
    黄荣辉, 张振洲, 黄刚, 等.夏季东亚季风区水汽输送特征及其与南亚夏季风区水汽输送的差别.大气科学, 1998, 22(4):460-469. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK804.007.htm
    [29]
    常越, 何金海, 刘芸芸, 等.华南旱、涝年前汛期水汽输送特征的对比分析.高原气象, 2006, 25(6):1064-1070. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200606012.htm
    [30]
    申乐琳, 何金海, 周秀骥, 等.近50年来中国夏季降水及水汽输送特征研究.气象学报, 2010, 68(3):918-931. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201006016.htm
    [31]
    何金海, 刘芸芸, 常越.西北地区夏季降水异常及其水汽输送和环流特征分析.干旱气象, 2005, 23(1):10-16. http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200501001.htm
    [32]
    董立清, 任金声, 徐瑞珍, 等.黄河中游强暴雨过程的中低纬度环流特征和水汽输送.应用气象学报, 1996, 7(2):160-168. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960225&flag=1
    [33]
    孙颖, 丁一汇.1997年东亚夏季风异常活动在汛期降水中的作用.应用气象学报, 2002, 13(3):22-32. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020338&flag=1
  • 加载中
  • -->

Catalog

    Figures(6)

    Article views (2703) PDF downloads(538) Cited by()
    • Received : 2015-02-03
    • Accepted : 2015-09-22
    • Published : 2016-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint