Li Li, Kuang Zhaomin, Mo Jianfei, et al. Assessment of autumn drought risk of sugarcane in Guangxi. J Appl Meteor Sci, 2016, 27(1): 95-101. DOI:  10.11898/1001-7313.20160110.
Citation: Li Li, Kuang Zhaomin, Mo Jianfei, et al. Assessment of autumn drought risk of sugarcane in Guangxi. J Appl Meteor Sci, 2016, 27(1): 95-101. DOI:  10.11898/1001-7313.20160110.

Assessment of Autumn Drought Risk of Sugarcane in Guangxi

DOI: 10.11898/1001-7313.20160110
  • Received Date: 2015-08-14
  • Rev Recd Date: 2015-09-28
  • Publish Date: 2016-01-31
  • Guangxi is one of the annual precipitation-rich regions of the country. However, seasonal drought occurs in high frequency because of spatiotemporal nonuniform distribution of rainfall. Seasonal drought has rather large influences on the agricultural production, especially on the sucrose industry, which is one of the most important economic pillar industries in Guangxi. Autumn is the critical elongation and sugar accumulation stage for sugarcane. Severe autumn drought will cause a decline in production, or which at sugar accumulation stage, will decrease sugar content, increase pectin weight, reduce sugar yield and recovery rate, and cause a decline in commodity quality. Therefore, it will affect the sugar market and the whole industry chain, as well as sugarcane farmers and the local agricultural economy. In order to strengthen the risk assessment and emergency management capability of the autumn drought disasters of sugarcane, according to the concept of risk triangle, the autumn drought risk assessment indicator system is established. Indicators of system are determined according to drought risk, possibility of disaster, vulnerability of disaster bearing body, by use of meteorological data, vegetation, basic geographic information and socio-economic data from the database. The database is constructed for risk assessment of drought disasters of sugarcane, including disaster-causing factors (such as rainfall), disaster-forming environment (such as topography, hydrographic net, vegetative cover, etc.), disaster bearing body (such as sugarcane planting area, economy, etc.), and disaster prevention and mitigation capability (such as reservoir and other water conservancy facilities). Then factor weights are obtained by analytic hierarchy process (AHP), and the comprehensive assessment model is established and calculated to get the disaster risk index, which are regionalized by geographic information system (GIS). The distribution indicates that the highest and higher risk areas include the part of Laibin and Chongzuo, which are the largest main sugarcane-producing regions, at the top of the planting area list, the medium risk area consists the most part of Chongzuo, the east and west of Laibin, the south-central of Liuzhou, the west of Nanning, and the lowest risk areas include the southeast of Guangxi.Validating results show that the distribution of autumn drought disaster risk of sugarcane is basically consistent with the spatial distribution of drought disaster losses. The analysis also shows that regional differences of drought risk of sugarcane is reflected, because of different effects of hazard, formative, damage and disaster relief, by choosing the right and feasibility evaluation metrics appropriately. Above all, the autumn drought risk assessment method is feasible by introducing risk triangle theory and taking advantage of AHP and GIS, and the evaluation is more reasonable with higher verification accuracy.
  • Fig. 1  Regionalization of autumn drought risk of sugarcane in Guangxi

    Table  1  Autumn drought disaster assessment indicator system and weights of sugarcane of Guangxi

    因子 因子权重 指标 指标权重
    干旱危险度 (H) 0.5282 少雨日数 (HD) 0.5276
    水系 (HW) 0.2621
    地形 (HT) 0.2103
    承灾体受灾可能性 (E) 0.2835 种植面积 (EA) 1.0000
    承灾体脆弱度 (V) 0.1883 植被NDVI (VN) 0.5937
    人均GDP (VG) 0.1334
    水库库容 (VC) 0.2729
    DownLoad: Download CSV

    Table  2  Topographic index assignment

    高程 高程标准差
    B1 B2 B3
    A1 0.4 0.5 0.6
    A2 0.5 0.6 0.7
    A3 0.6 0.7 0.8
    A4 0.7 0.8 0.9
    DownLoad: Download CSV

    Table  3  Classification standards of rivers, lakes and reservoir affected zones

    水体类型 影响区宽度/km
    一级影响区 二级影响区
    C1 8 12
    C2 6 10
    C3 0.5 1
    C4 2 4
    C5 3 6
    DownLoad: Download CSV
  • [1]
    Schneider P J, Schauer B A.HAZUS:Its development and its future.Natural Hazards Review, 2006, 7(2):40-44. doi:  10.1061/(ASCE)1527-6988(2006)7:2(40)
    [2]
    Wilhite D A.Drought and Water Crises:Science, Technology and Management Issues//Soils, Plants, and the Environment/Boca Raton, Florida:CRC Press, 2005:39-72.
    [3]
    Yao Guozhang.Disaster Management System of Japan:Researches and Lessons.Beijing:Peking University Press, 2009:64-89.
    [4]
    侯威, 杨杰, 赵俊虎.不同时间尺度下气象旱涝强度评估指数.应用气象学报, 2013, 24(6):695-703. doi:  10.11898/1001-7313.20130606
    [5]
    Shamsuddin S, Houshang B.Drought risk assessment in the western part of Bangladesh.Natural Hazards, 2008, 46(3):391-413. doi:  10.1007/s11069-007-9191-5
    [6]
    陈晓楠, 段春青, 刘昌明, 等.基于两层土壤计算模式的农业干旱风险评估模型.农业工程学报, 2009, 25(9):51-55. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200909013.htm
    [7]
    张继权, 严登华, 王春乙, 等.辽西北地区农业干旱灾害风险评价与风险区划研究.防灾减灾工程学报, 2012, 32(3):300-306. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201203008.htm
    [8]
    Richter G M, Semenov M A.Modeling impacts of climate change on wheat yields in England and Wales:Assessing drought risks.Agricultural Systems, 2005, 84:77-97. doi:  10.1016/j.agsy.2004.06.011
    [9]
    罗伯良, 黄晚华, 帅细强, 等.湖南省水稻生产干旱灾害风险区划.中国农业气象, 2011, 32(3):461-465. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201103023.htm
    [10]
    冯建设, 王建源, 王新堂, 等.相对湿润度指数在农业干旱监测业务中的应用.应用气象学报, 2011, 22(6):766-772. doi:  10.11898/1001-7313.20110616
    [11]
    王明田, 张玉芳, 马均, 等.四川省盆地区玉米干旱灾害风险评估及区划.应用生态学报, 2012, 23(10):2803-2811. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201210027.htm
    [12]
    任义方, 赵艳霞, 王春乙.河南省冬小麦干旱保险风险评估与区划.应用气象学报, 2011, 22(5):537-548. doi:  10.11898/1001-7313.20110503
    [13]
    张存杰, 王胜, 宋艳玲, 等.我国北方地区冬小麦干旱灾害风险评估.干旱气象, 2014, 32(6):883-893. http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201406001.htm
    [14]
    宋艳玲, 蔡雯悦, 柳艳菊, 等.我国西南地区干旱变化及对贵州水稻产量影响.应用气象学报, 2014, 25(5):550-558. doi:  10.11898/1001-7313.20140504
    [15]
    蔡福, 张淑杰, 纪瑞鹏, 等.近30年辽宁玉米水分适宜度时空演变特征及农业干旱评估.应用生态学报, 2015, 26(1):233-240. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201501032.htm
    [16]
    李世奎, 霍治国, 王素艳, 等.农业气象灾害风险评估体系及模型研究.自然灾害学报, 2004, 13(1):77-87. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200401013.htm
    [17]
    钟秀丽, 王道龙, 李玉中, 等.黄淮麦区小麦拔节后霜害的风险评估.应用气象学报, 2007, 18(1):102-107. doi:  10.11898/1001-7313.20070118
    [18]
    魏一鸣, 万庆, 周成虎.基于神经网络的自然灾害灾情评估模型研究.自然灾害学报, 1997, 6(2):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH702.000.htm
    [19]
    罗莹, 金龙, 王业宏.旱涝灾害的门限神经网络预报模型.灾害学, 2003, 18(2):1-6. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-CMJH200309002910.htm
    [20]
    李英柳.人工神经网络在环境灾害预测中的应用进展.地质灾害与环境保护, 2010, 21(1):8-11. http://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201001005.htm
    [21]
    张星, 陈惠, 周乐照.福建省农业气象灾害灰色评价与预测.灾害学, 2007, 22(4):43-45;56. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200704009.htm
    [22]
    张星, 郑有飞, 周乐照.农业气象灾害灾情等级划分与年景评估.生态学杂志, 2007, 26(3):418-421. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200807158.htm
    [23]
    康永辉, 解建仓, 肖飞鹏, 等.广西大石山区干旱灾害模糊风险评估与区划研究.西北农林科技大学学报:自然科学版, 2012, 40(4):223-229. http://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201204038.htm
    [24]
    康永辉, 解建仓, 黄伟军, 等.基于干旱综合指数的模糊信息分配法的农业干旱风险评估研究.干旱地区农业研究, 2013, 31(6):174-180. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201306032.htm
    [25]
    丁青云, 艾萍, 吴军斓, 等.基于信息扩散理论的干旱灾害风险评估.中国农村水利水电, 2015(3):99-102. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201503027.htm
    [26]
    霍治国, 李世奎, 王素艳, 等.主要农业气象灾害风险评估技术及其应用研究.自然资源学报, 2003, 18(6):692-703. doi:  10.11849/zrzyxb.2003.06.007
    [27]
    扈海波, 轩春怡, 诸立尚.北京地区城市暴雨积涝灾害风险预评估.应用气象学报, 2013, 24(1):99-108. doi:  10.11898/1001-7313.20130110
    [28]
    王洪芬.计量地理学概论.济南:山东教育出版社, 2001:185-207.
    [29]
    李永, 胡向红, 乔箭.改进的模糊层次分析法.西北大学学报:自然科学版, 2005, 35(1):11-12:16. http://www.cnki.com.cn/Article/CJFDTOTAL-JSGU200801009.htm
    [30]
    陈家金, 李丽纯, 林晶, 等.福建省枇杷气象灾害综合风险评估.应用气象学报, 2014, 25(2):232-241. doi:  10.11898/1001-7313.20140213
    [31]
    Plate E J.Flood risk and flood management.J Hydrology, 2002, 267(1-2):2-11. doi:  10.1016/S0022-1694(02)00135-X
    [32]
    李莉, 匡昭敏, 莫建飞, 等.基于AHP和GIS的广西秋旱灾害风险等级评估.农业工程学报, 2013, 29(19):193-201. doi:  10.3969/j.issn.1002-6819.2013.19.024
  • 加载中
  • -->

Catalog

    Figures(1)  / Tables(3)

    Article views (2947) PDF downloads(798) Cited by()
    • Received : 2015-08-14
    • Accepted : 2015-09-28
    • Published : 2016-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint