Lou Xiaofeng, Shi Yu, Lu Guangxian. Numerical modeling of hailstorms with AGI seeding. J Appl Meteor Sci, 2016, 27(2): 129-139. DOI:  10.11898/1001-7313.20160201.
Citation: Lou Xiaofeng, Shi Yu, Lu Guangxian. Numerical modeling of hailstorms with AGI seeding. J Appl Meteor Sci, 2016, 27(2): 129-139. DOI:  10.11898/1001-7313.20160201.

Numerical Modeling of Hailstorms with AgI Seeding

DOI: 10.11898/1001-7313.20160201
  • Received Date: 2015-07-28
  • Rev Recd Date: 2016-01-25
  • Publish Date: 2016-03-31
  • Cloud numerical simulations are important ways in research of hail processes and hail suppression activities. A 3-D hail model is used to simulate a hailfall case in Beijing on 10 Jun 1996. Series silver iodide (AgI) seeding simulations are designed on seeding height levels, seeding rates and starting seeding times, to get a best seeding scheme which can be used to advise outfield hail suppression operations. The 3-D hail model calculates 27 microphysical processes, which includes condensation, deposition, evaporation, collection, ice nucleation, ice multiplication, melting and freezing, auto conversions of cloud to rain, ice to graupel and graupel to hail. Seeding code is based on cloud chamber results of the mechanism of ice-forming processes by AgI which can be identified as deposition, contact freezing, condensation freezing and immersion freezing nucleation. The total nucleation activities are the sum of contributions from different nucleation modes. Humidity, temperature, cloud droplets concentration and cloud holding time are the main influence factors in AgI nucleation processes. The horizontal domain of the model is 96 km by 96 km with a constant grid increment of 1.2 km, and vertical resolution is 700 m and 20 km high. The time step is 2 s, and sounding data at 0800 BT are used as the initial.In all seeding simulations of different height levels, AgI particles start to nucleate only when they are moved to regions where air temperature is lower than-5℃. If seeding within 2.1-4.9 km height, much more ice nucleation happens, thus resulting in good hail suppression effect. The artificial ice particles make up insufficient natural ice particles. The seeding effect greatly depends on seeding amount. When the amount is less than 5×105 kg-1, hail precipitation is suppressed and rainfall is enhanced. When the amount is bigger than 1×107 kg-1, hail processes are greatly reduced and the rain processes also are weakened. For distributions of updrafts and cloud water, seeding at 12th, 15th, and 18th min, more ice nucleus is nucleated, which makes more graupel particles and better hail suppression effects than other seeding time tests. Among the series of seeding experiments, the best scheme is seeding with 5×106 kg-1 near 5 km height, at the 15th min of simulation, when hail precipitation is decreased about 60% and no much rainfall is lost.
  • Fig. 1  Subsection of mixing ratios of water substances (cloud water in the blue contour, ice in the grey contour, graupel in the orange contour, hail in the red contour, rain water in the green contour, contour values are 0.1, 1, 2 g·kg-1) and temperature (black contour), vector of the 24th min simulation results (a) time series of simulated maximum updraft (b) and total rainfall with hail precipitation (c)

    Fig. 2  Subsections of seeding areas at 10 different levels (the orange curve), cloud water mixing ratios (the shaded), vector, temperature (the contour, unit:℃)(a) and domain averaged AgI nucleation rates (b)

    Fig. 3  Time series of hail precipitation amounts within 3 min simulation (a) and total hail precipitation (b) at 10 different seeding levels

    Fig. 4  Subsections of simulation results at time point of 12 min after seeding near ground (a), 7-8 level (b), 10-11 level (c) of nucleation ice particles (the black contour, unit:L-1), natural ice particles (the red contour, unit:L-1), graupel mixing ratios (the shaded with values of 0.1, 1, 2 g·kg-1), temperature (the blue contour, unit:℃) and vector

    Fig. 5  Time series of hailfall (a) and rainfall (b) amounts with 7 seeding rates of 5×107, 1×107, 5×106, 1×106, 5×105, 1×105, 5×104 kg-1

    Fig. 6  Ice nucleation numbers (a), hail amount (b) and total rainfall precipitation (c) with different seeding start time

    Fig. 7  Subsections of mixing ratios of total water substances (the shaded) and number concentrations of AgI aerosols (Naer, the blue contour) and AgI particles immersed in drops (Naim, the green contour), vector and temperature (the black contour, unit:℃)(total water substance in shaded contour with values of 1, 2, 3 g·kg-1 and 4 g·kg-1, Naer and Naim with values of 1, 10, 100 L-1 and 1000 L-1) (a) seeding time point, (b)10 min after seeding

    Fig. 8  Time series of natural and seeded hail precipitation and rain quanotity (a), hail and graupel quantity (b)

    Table  1  Hailfall amonts of series simulations at different seeding vertical levels

    垂直层 高度/km 降雹量/kt
    1~2 0~1.4 102
    3~4 1.4~2.8 87
    4~5 2.1~3.5 80
    5~6 2.8~4.2 75
    6~7 3.5~4.9 73
    7~8 4.2~5.6 57
    8~9 4.9~6.3 66
    9~10 5.6~7.0 87
    10~11 6.3~7.7 123
    11~12 7.0~8.4 134
    DownLoad: Download CSV

    Table  2  Hailfall amonts of series simulations with different seeding amounts

    催化剂量/kg-1 催化剂总量/g 降雹量/kt
    5×104 0.65 137
    1×105 1.29 124
    5×105 6.45 107
    1×106 12.9 75
    5×106 64.5 57
    1×107 129 31
    5×107 645 9.9
    DownLoad: Download CSV

    Table  3  Hailfall amonts of series simulations with different seeding start times

    催化开始时间/min 降雹量/kt
    36 139
    30 136
    27 134
    24 128
    21 103
    18 79
    15 51
    12 68
    9 79
    6 95
    DownLoad: Download CSV
  • [1]
    Xie B, Zhang Q, Wang Y.Trends in hail in China during 1960-2005.Geophys Res Lett, 2008, 35, L13801, doi: 10.1029/2008GL034067.
    [2]
    Changnon S A.Long-term fluctuations in hail incidences in the United States.J Clim, 2000, 13:658-664. doi:  10.1175/1520-0442(2000)013<0658:LTFIHI>2.0.CO;2
    [3]
    Cao Z.Severe hail frequency over Ontario, Canada:Recent trend and variability.Geophys Res Lett, 2008, 35, L14803, doi: 10.1029/2008GL034888.
    [4]
    WMO.Expert Meeting to Review the Present Status of Hail Suppression.Geneva:WMO-TD No.764, 1995.
    [5]
    WMO.WMO Documents on Weather Modification.Abu Dhabi, 2010.
    [6]
    盛裴轩, 毛节泰, 李建国, 等.大气物理学.北京:北京大学出版社, 2003.
    [7]
    许焕斌.人工影响天气动力学研究.北京:气象出版社, 2014.
    [8]
    段英, 许焕斌.爆炸防雹中的云微物理机制的探讨.气象学报, 2001, 59(3):334-340. doi:  10.11676/qxxb2001.035
    [9]
    许焕斌, 王思微.关于爆炸防雹方法的理论依据和技术要领的探讨.气象科学研究院院刊, 1989, 4(3):311-318. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198903009.htm
    [10]
    葛润生, 姜海燕, 彭红.北京地区雹暴气流结构的研究.应用气象学报, 1998, 9(1):1-7. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980101&flag=1
    [11]
    朱君鉴, 刁秀广, 黄秀韶.一次冰雹风暴的CINRAD/SA产品分析.应用气象学报, 2004, 15(5):579-589. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040571&flag=1
    [12]
    朱敏华, 俞小鼎, 夏峰, 等.强烈雹暴三体散射的多普勒多天气雷达分析.应用气象学报, 2006, 17(2):215-225. doi:  10.11898/1001-7313.20060213
    [13]
    王令, 郑国光, 康玉霞, 等.多普勒天气雷达径向速度图上的雹云特征.应用气象学报, 2006, 17(3):281-288. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060349&flag=1
    [14]
    胡胜, 罗聪, 张羽, 等.广东大冰雹风暴单体的多普勒天气雷达特征.应用气象学报, 2015, 26(1):57-65. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150106&flag=1
    [15]
    洪延超, 肖辉, 李宏宇, 等.冰雹云中微物理过程研究.大气科学, 2002, 26(3):421-432. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200203012.htm
    [16]
    胡朝霞, 李宏宇, 肖辉, 等.旬邑冰雹云的数值模拟及累积带特征.气候与环境研究, 2008, 8(2):196-208. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200302006.htm
    [17]
    郭学良, 黄美元, 洪延超, 等.三维冰雹分档强对流云数值模拟研究.大气科学, 2001, 25(5):707-719. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200105012.htm
    [18]
    许焕斌, 田利庆.强对流云中"穴道"的物理含义和应用.应用气象学报, 2008, 19(3):372-379. doi:  10.11898/1001-7313.20080315
    [19]
    Noppel H, Blahak U, Seifert A.Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme.Atmos Res, 2010, 96:286-301. doi:  10.1016/j.atmosres.2009.09.008
    [20]
    许焕斌, 段英.冰雹形成机制的研究并论人工雹胚与自然雹胚的"利益竞争"防雹假说.大气科学, 2001, 25(2):277-288. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200102016.htm
    [21]
    陈宝君, 肖辉.过冷雨水低含量条件下冰雹形成和增长机制及其催化效果的数值模拟.大气科学, 2007, 31(2):273-290. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200702009.htm
    [22]
    胡朝霞, 齐彦斌, 郭学良, 等.青藏高原东部冰雹形成机理的数值模拟.气候与环境研究, 2007, 12(1):37-48. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200701004.htm
    [23]
    郭恩铭, 张纪淮, 胡志晋, 等.冰雹云和多心冰雹结构的观测与分析.辽宁气象, 2003, 3:6-9. doi:  10.3969/j.issn.1673-503X.2003.01.004
    [24]
    黄燕, 徐华英.播撒碘化银粒子进行人工防雹的数值试验.大气科学, 1994, 18(5):612-622. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK405.011.htm
    [25]
    何观芳, 胡志晋.不同云底温度雹云成雹机制及其引晶催化的数值研究.气象学报, 1998, 56(1):31-45. doi:  10.11676/qxxb1998.003
    [26]
    Curic M, Janc D, Vuckovic V.Cloud seeding impact on precipitation as revealed by cloud-resolving mesoscale model.Meteor Atmos Phys, 2007, 95(3):179-193. http://www.citeulike.org/article/1172126
    [27]
    Farley R D.Numerical modeling of hailstorms and hailstone growth.Part III:Simulation of an Alberta hailstorm-natural and seeded cases.J Climate Appl Meteor, 1987, 26:789-812. doi:  10.1175/1520-0450(1987)026<0789:NMOHAH>2.0.CO;2
    [28]
    周非非, 肖辉, 黄美元, 等.人工抑制上升气流对冰雹云降影响的数值试验研究.南京气象学院学报, 2005, 28(2):153-162. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200502001.htm
    [29]
    肖明静, 郭学良, 肖稳安.碘化银、液态CO2播撒对流云防雹增雨的数值模拟.南京气象学院学报, 2006, 29(1):768-775. http://mall.cnki.net/magazine/Article/NJQX200601006.htm
    [30]
    巴特尔, 单久涛, 博格.人工防雹催化效果的数值模拟.安徽农业科学, 2013, 41(7):3038-3040. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201307088.htm
    [31]
    楼小凤, 孙晶, 史月琴, 等.减弱对流云降水的AgI催化原理的数值模拟研究.气象学报, 2014, 72(4):782-793. doi:  10.11676/qxxb2014.044
    [32]
    DeMott P J.Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols.Atmos Res, 1995, 38(3-4):63-99. https://www.researchgate.net/publication/222064479_Quantitative_descriptions_of_ice_formation_mechanisms_of_silver_iodide-type_aerosols
    [33]
    刘诗军, 胡志晋, 游来光.碘化银核化过程的数值模拟研究.气象学报, 2005, 63(1):30-40. doi:  10.11676/qxxb2005.004
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(3)

    Article views (2864) PDF downloads(553) Cited by()
    • Received : 2015-07-28
    • Accepted : 2016-01-25
    • Published : 2016-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint