Gao Zhuyu, Ruan Zheng, Wei Ming, et al. Quality factors and processing algorithm for wind profiling radar data. J Appl Meteor Sci, 2016, 27(2): 148-159. DOI:  10.11898/1001-7313.20160203.
Citation: Gao Zhuyu, Ruan Zheng, Wei Ming, et al. Quality factors and processing algorithm for wind profiling radar data. J Appl Meteor Sci, 2016, 27(2): 148-159. DOI:  10.11898/1001-7313.20160203.

Quality Factors and Processing Algorithm for Wind Profiling Radar Data

DOI: 10.11898/1001-7313.20160203
  • Received Date: 2015-05-21
  • Rev Recd Date: 2015-11-04
  • Publish Date: 2016-03-31
  • In recent years, wind profiling radar (WPR) network in China is under rapid development. To take advantage of the network measurements in weather analysis and numerical prediction, it's of great significance to make full aware of quality factors and improve the current processing algorithm for WPR data.Many factors affect the quality of horizontal wind data detected by WPR, especially system error and meteorological background. According to five-beam WPR, a new method for examining system error from radar Doppler measurements is proposed. As for meteorological background, wind filed is assumed homogenous when it is detected by WPR, and the accuracy of horizontal wind data will decline when the assumption is not satisfied. During the period of precipitation, scattering caused by raindrops is much stronger than turbulence detected by WPR. And the assumption of homogenous wind breaks down easily for the cause that fall terminal velocity of precipitation particles changes rapidly in space when convective precipitation happens, which is a significant problem for WPR data quality control algorithm.However, two independent wind profiles can be measured with a five-beam WPR and differences between measured zonal winds and meridional winds can reflect errors caused by the inhomogeneity of wind field. In order to reduce such errors, all observations are examined to make sure data detected under circumstances where the wind filed is extremely inhomogenous are deleted. Besides, different averaging methods, such as consensus average and simple average, used to calculate hourly averaged winds also affect the accuracy of it and comparisons are conducted on two averaging methods.Combined with 10 radars of Guangdong WPR network, evaluation of the new methods for processing basic data is analyzed from March to May in 2014. Results show that 10 radars in Guangdong WPR network, including 8 boundary radars (LC), 1 troposphere radar Ⅰ(PA) and 1 troposphere radar Ⅱ(PB), meet the designed requirements respectively in terms of the maximum height of credible data in clear air, which is 3 km for LC radar, 6 km for PB radar and 10 km for PA radar. Furthermore, there are no large system errors in 10 radars except that the examining consequence is unsatisfactory during 1-2 km for PA radar. It is necessary to consider the atmospheric inhomogeneities that may cause great errors especially when it rains heavily, and consensus averaged wind is superior to simple averaged wind in median and high heights. Therefore, an improved algorithm according to examination of atmospheric inhomogeneities and consensus average is proposed to obtain hourly averaged winds. It is proved that winds obtained from the improved algorithm show better representation than the currently used data during precipitation, as the stand deviation of differences between two independent measured zonal wind values and meridional wind values are both close to 1 m·s-1.
  • Fig. 1  The distribution of Vew and Vns in low and high modes at Zhuhai Station in Mar 2014

    Fig. 2  The statistical average of Vew and Vns of different radars

    Fig. 3  The distribution of Δu and Δv for all observations at Zhuhai Station in Mar 2014

    (a) low mode, (b) high mode

    Fig. 4  The distribution of Δu and Δv in low and high modes using different schemes

    Fig. 5  The stand deviation of Δu and Δv changing with height in low and high modes using different schemes

    Table  1  Parameters of wind profile radars

    参数 边界层雷达 (LC) 对流层Ⅱ型雷达 (PB) 对流层Ⅰ型雷达 (PA)
    低模式 高模式 低模式 高模式 低模式 中模式 高模式
    波长/mm 232 232 674 674 674 674 674
    探测起始高度/m 100 1050 150 2070 150 3030 4950
    探测终止高度/m 2740 5970 3630 10470 3750 6630 16950
    距离库数 45 83 30 36 31 16 26
    距离库长/m 60 60 120 240 120 240 480
    DownLoad: Download CSV

    Table  2  Valid height of Guangdong wind profiler network from Mar to May in 2014 of clear sky (unit:km)

    站名 3月 4月 5月
    珠海 3.8 4.4 3.2
    潮州 4.4 4.4 3.6
    从化 4.2 4.4 3.6
    龙门 3.6 4.2 4.2
    新会 4.6 4.6 3.6
    罗定 4.2 4.5 3.6
    连州 4.2 4.6 4.2
    增城 4.0 4.6 3.4
    湛江 6.0 7.0 8.0
    萝岗 10.0 12.0 12.0
    DownLoad: Download CSV

    Table  3  Standard deviation of Δu and Δv using simple average and consensus average

    高度/km 数学平均 一致性平均
    Δu标准差/(m·s-1) Δv标准差/(m·s-1) Δu标准差/(m·s-1) Δv标准差/(m·s-1)
    (0,1] 1.85 1.70 2.29 2.25
    (1,2] 2.52 2.72 2.46 2.59
    (2,3] 3.97 4.38 3.20 3.62
    (3,4] 5.06 6.52 4.68 4.65
    (4,5] 8.73 9.69 4.44 5.37
    DownLoad: Download CSV

    Table  4  Comparison between improved algorithm data and OOBS data

    高度/km 业务OOBS数据 算法处理结果
    u离差标准差/
    (m·s-1)
    v离差标准差/
    (m·s-1)
    u离差标准差/
    (m·s-1)
    v离差标准差/
    (m·s-1)
    (0, 1] 2.2 2.4 1.6 1.6
    (1, 2] 2.4 2.5 1.5 1.6
    (2, 3] 2.7 2.7 1.8 1.7
    (3, 4] 2.6 3.1 1.6 1.5
    (4, 5] 3.7 3.3 1.4 1.5
    DownLoad: Download CSV

    Table  5  The standard deviation of Δu and Δv in Guangdong wind profiler network from Mar to May in 2014(unit:m·s-1)

    站点 探测模式 Δu标准差 Δv标准差
    3月 4月 5月 3月 4月 5月
    珠海 1.07 1.12 1.12 1.06 1.12 1.08
    1.04 1.05 1.14 1.11 1.08 1.15
    潮州 1.17 1.24 1.36 1.09 1.13 1.30
    1.16 1.27 1.38 1.14 1.25 1.35
    从化 1.18 1.23 1.32 1.17 1.21 1.33
    1.14 1.18 1.31 1.15 1.23 1.30
    龙门 1.13 1.21 1.32 1.14 1.13 1.29
    1.14 1.14 1.39 1.10 1.14 1.37
    新会 1.12 1.09 1.23 1.15 1.29 1.21
    1.00 1.05 1.24 1.04 1.20 1.28
    罗定 1.10 1.19 1.24 1.15 1.19 1.24
    1.10 1.16 1.29 1.20 1.19 1.30
    连州 1.36 1.40 1.30 1.37 1.40 1.29
    1.19 1.26 1.28 1.21 1.29 1.26
    增城 1.12 1.18 1.20 1.22 1.24 1.26
    1.12 1.19 1.29 1.22 1.27 1.29
    湛江 0.96 0.94 0.91 1.03 0.91 0.87
    1.24 1.10 1.11 1.17 1.09 1.10
    萝岗 1.36 1.25 1.37 0.94 1.00 0.92
    0.68 0.78 1.03 0.71 0.74 1.29
    1.22 1.15 1.30 1.30 1.20 1.31
    DownLoad: Download CSV
  • [1]
    阮征, 葛润生, 吴志根, 等.风廓线仪探测降水云体结构方法的研究.应用气象学报, 2002, 13(3):330-338. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020343&flag=1
    [2]
    刘淑媛, 郑永光, 陶祖钰.利用风廓线雷达资料分析低空急流的脉动与暴雨关系.热带气象学报, 2003, 19(3):63-68. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-BJQX200811001013.htm
    [3]
    阮征, 何平, 葛润生.风廓线雷达对大气折射率结构常数的探测研究.大气科学, 2008, 32(1):133-140. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200801012.htm
    [4]
    孙康远, 阮征, 魏鸣, 等.风廓线雷达反演大气比湿廓线的初步试验.应用气象学报, 2013, 24(4):407-415. doi:  10.11898/1001-7313.20130403
    [5]
    何越, 何平, 林晓萌.基于双高斯拟合的风廓线雷达反演雨滴谱.应用气象学报, 2014, 25(5):570-580. doi:  10.11898/1001-7313.20140506
    [6]
    蒲维维, 赵秀娟, 张小玲.北京地区夏末秋初气象要素对PM2.5污染的影响.应用气象学报, 2011, 22(6):716-723. doi:  10.11898/1001-7313.20110609
    [7]
    Weber B L, Wuertz D B, Strauch R G, et al.Preliminary evaluation of the first NOAA demonstration network profiler.J Atmos Oceanic Technol, 1990, 7:909-918. doi:  10.1175/1520-0426(1990)007<0909:PEOTFN>2.0.CO;2
    [8]
    Masahito Ishihara, Yoshio Kato, Toshihiro Abo, et al.Characteristics and performance of the operational wind profiler network of the Japan meteorological agency.J Meteor Soc Japan, 2006, 86(6):1085-1096. https://www.researchgate.net/publication/228696394_Characteristics_and_performance_of_the_operational_wind_profiler_network_of_the_Japan_Meteorological_Agency
    [9]
    Benjamin S G, Schwartz B E, Szoke E J, et al.The Value of Wind Profiler Data in U.S. Weather Forecasting.Amer Meteor Soc, 2004, 85:1871-1886. doi:  10.1175/BAMS-85-12-1871
    [10]
    Dunn L.An example of subjective interpretation of network profiler data in real-time forecasting.Wea Forecasting, 1986, 1:219-225. doi:  10.1175/1520-0434(1986)001<0219:AEOSIO>2.0.CO;2
    [11]
    Strauch R G, Merritt D A, Moran K P, et al.The Colorado wind profiling network.J Atmos Oceanic Technol, 1984, 1:37-49. doi:  10.1175/1520-0426(1984)001<0037:TCWPN>2.0.CO;2
    [12]
    Weber B L, Wuertz D B, Welsh D C.Quality controls for profiler measurements of winds and RASS temperatures.J Atmos Oceanic Technol, 1993, 10:452-464. doi:  10.1175/1520-0426(1993)010<0452:QCFPMO>2.0.CO;2
    [13]
    Lambert W C, Taylor G E.Data Quality Assessment Methods for the Eastern Range 915 MHz Wind Profiler Network.NASA Contractor Report CR-1998-207906, Kennedy Space Center, 1998. https://www.researchgate.net/publication/24295330_Data_Quality_Assessment_Methods_for_the_Eastern_Range_915_MHz_Wind_Profiler_Network
    [14]
    Weber B L, Wuertz D B.Comparison of rawinsonde and wind profiler radar measurements.J Atmos Oceanic Technol, 1990, 7:157-174. doi:  10.1175/1520-0426(1990)007<0157:CORAWP>2.0.CO;2
    [15]
    May P T.Comparison of wind-profiler and radiosonde measurements in the tropics.J Atmos Oceanic Technol, 1993, 10:122-127. doi:  10.1175/1520-0426(1993)010<0122:COWPAR>2.0.CO;2
    [16]
    王欣, 卞林根, 彭浩, 等.风廓线仪系统探测试验与应用.应用气象学报, 2005, 16(5):693-698. doi:  10.11898/1001-7313.20050517
    [17]
    Strauch R G, Weber B L, Frisch A S, et al.The precision and relative accuracy of profiler wind measurements.J Atmos Oceanic Technol, 1987, 4:563-571. doi:  10.1175/1520-0426(1987)004<0563:TPARAO>2.0.CO;2
    [18]
    Wuertz D B, Weber B L, Strauch R G.Effect of precipitation on UHF wind profiler measurements.J Atmos Oceanic Technol, 1988, 5:450-465. doi:  10.1175/1520-0426(1988)005<0450:EOPOUW>2.0.CO;2
    [19]
    邓闯, 阮征, 魏鸣, 等.风廓线雷达测风精度评估.应用气象学报, 2012, 23(5):523-532. doi:  10.11898/1001-7313.20120502
    [20]
    李晨光, 刘淑媛, 陶祖钰.华南暴雨实验期间香港风廓线雷达资料的评估.热带气象学报, 2003, 19(3):269-276. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200303005.htm
    [21]
    万蓉, 周志敏, 崔春光, 等.风廓线雷达资料和探空资料的对比分析.暴雨灾害, 2011, 30(2):130-136. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201102006.htm
    [22]
    杨馨蕊, 马舒庆, 吴蕾.UHF风廓线雷达降水数据判别方法的比较与评价.大气科学学报, 2010, 33(5):576-581. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201005009.htm
    [23]
    陈少应, 王凡.风廓线雷达测量精度分析.现代雷达, 2000, 22(5):11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-XDLD200005002.htm
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(5)

    Article views (3637) PDF downloads(1134) Cited by()
    • Received : 2015-05-21
    • Accepted : 2015-11-04
    • Published : 2016-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint