Guo Huanhuan, Duan Mingkeng, Zhi Xiefei, et al. Characteristics of the forecast jumpiness based on TIGGE data. J Appl Meteor Sci, 2016, 27(2): 220-229. DOI:  10.11898/1001-7313.20160210.
Citation: Guo Huanhuan, Duan Mingkeng, Zhi Xiefei, et al. Characteristics of the forecast jumpiness based on TIGGE data. J Appl Meteor Sci, 2016, 27(2): 220-229. DOI:  10.11898/1001-7313.20160210.

Characteristics of the Forecast Jumpiness Based on TIGGE Data

DOI: 10.11898/1001-7313.20160210
  • Received Date: 2015-05-01
  • Rev Recd Date: 2015-10-12
  • Publish Date: 2016-03-31
  • Based on 500 hPa geopotential height, 850 hPa temperature and the mean sea level pressure forecasts from ECMWF, NCEP and CMA in TIGGE datasets, characteristics of the forecast jumpiness for the control and ensemble-mean forecasts and the comparison of their characteristics conducted using Jumpiness index and other different forecast jumps: The flip, flip-flop, flip-flop-flip and so on. Results indicate that in terms of the period-average forecast jumpiness features, the period-average jumpiness indices increase with the forecast range in agreement with the practical experience that forecasts are usually more consistent at short forecast ranges. And for ensemble prediction system, the ensemble-mean forecast is less jumping than its corresponding control forecast, especially at long forecast ranges, which indicates that the forecast jumpiness could be reduced using the ensemble prediction method. And both for the control forecast and ensemble-mean forecast, the forecast jumpiness of ECMWF is lower. In frequency statistics of the forecast jumpiness, frequencies of the flip, flip-flop and flip-flop-flip are in descending order. For these three types of forecast jumps, the frequency of ensemble-mean forecast is significantly lower than that of the control forecast especially at long forecast ranges. It indicates that the ensemble-mean forecast is less jumping than its corresponding control forecast, which also shows that the forecast jumpiness could be reduced using the ensemble prediction method. The frequency variation of parallel flip, parallel flip-flop and parallel flip-flop-flip indicates that the control forecast and ensemble-mean forecast have large difference at long forecast ranges. And the correlation coefficient of their Jumpiness indices also confirms this conclusion. At last, the sensitivity of the forecast jumpiness to areas, time and parameters are presented. Results show that the period-average forecast jumpiness has a strong sensitivity to the area and parameter. And the sensitivity of the control forecast to the area and parameter is stronger than that of ensemble-mean forecast. The smaller the studied area is, the larger the period-average forecast jumpiness becomes, which indicates that the forecast jumpiness intensity is stronger. As the weather and climate characteristics of the selected areas are not the same, the period-average forecast jumpiness is different. For different variables, the period-average forecast jumpiness is also various. The period-average Jumpiness index of mean sea level pressure is the maximum, the result of 500 hPa geopotential height is the second, and the minimum result is 850 hPa temperature. That is to say, the forecast jumpiness intensity of temperature is lower than geopotential height results. And the frequency of different forecast jumps and the difference of the jumpiness between control forecast and ensemble-mean forecast show little sensitivity to the choice of the area, time and parameter.
  • Fig. 1  Four different areas used in the research

    Fig. 2  Variables of Jumpiness index

    Fig. 3  Concepts of flip, flip-flop and flip-flop-flip

    (dashed line:half the period-average Jumpiness index called critical condition)

    Fig. 4  Period-average Jumpiness index for control and the ensemble-mean 500 hPa geopotential height forecasts of ECMWF-EPS, NCEP-EPS and CMA-EPS

    Fig. 5  Frequency statistics of occurrences of flip (a), flip-flop (b), flip-flop-flip (c), parallel flip (d), parallel flip-flop (e) and parallel flip-flop-flip (f) for control and ensemble-mean 500 hPa geopotential height forecasts of ECMWF-EPS, NCEP-EPS and CMA-EPS

    Fig. 6  Correlation of 500 hPa geopotential height Jumpiness index between control and the ensemble-mean forecasts of ECMWF-EPS, NCEP-EPS and CMA-EPS

    Fig. 7  Period-average Jumpiness index for 500 hPa geopotential height control and ensemble-mean forecasts of ECMWF-EPS for four different areas

    Fig. 8  Frequency statistics of the fip occurrence for ECMWF-EPS control and ensemble-mean forecasts for four seasons at 500 hPa geopotential height

    (a) the control forecasts, (b) the ensemble-mean forecasts

    Fig. 9  Period-average Jumpiness index for control and ensemble-mean forecasts of ECMWF-EPS for 500 hPa geopotential height, 850 hPa temperature and the mean sea level pressure

  • [1]
    Persson A, Riddaway B.Increasing trust in medium-range weather forecasts.ECMWF Newsletter, 2011, 129:8-12.
    [2]
    Zsoter E, Buizza R, Richardson D."Jumpiness" of the ECMWF and Met Office EPS control and ensemble-mean forecasts.Mon Wea Rev, 2009, 137(11):3823-3836. doi:  10.1175/2009MWR2960.1
    [3]
    Pappenberger F, Cloke H L, Persson A, et al.HESS opinions "on forecast (in) consistency in a hydro-meteorological chain:Curse or blessing?".Hydrol Earth Syst Sci, 2011, 15:2391-2400. doi:  10.5194/hess-15-2391-2011
    [4]
    Persson A.User Guide to ECMWF Forecast Products.Reading, United Kingdom:ECMWF, 2011:1-127.
    [5]
    Lashley S L, Fisher L, Simpson B J, et al.Observing Verification Trends and Applying a Methodology to Probabilistic Precipitation Forecasts at a National Weather Service Forecast Office.Preprints, 19th Conf on Probability and Statistics, New Orleans, LA, Am Meteorol Soc, 2008.
    [6]
    Ehret U.Convergence index:A new performance measure for the temporal stability of operational rainfall forecasts.Meteorologische Zeitschrift, 2010, 19(5):441-451. doi:  10.1127/0941-2948/2010/0480
    [7]
    Pappenberger F, Bogner K, Wetterhall F, et al.Forecast convergence score:A forecaster's approach to analyzing hydro-meteorological forecast systems.Adv Geosci, 2011, 29:27-32. doi:  10.5194/adgeo-29-27-2011
    [8]
    Bogner K, Pappenberger F.Multiscale error analysis, correction and predictive uncertainty estimation in a flood forecasting system.Water Resour Res, 2011, 47:W07524. https://www.researchgate.net/profile/Florian_Pappenberger/publication/222113123_Multiscale_error_analysis_correction_and_predictive_uncertainty_estimation_in_a_flood_forecasting_system/links/02e7e5214b155c5d81000000.pdf?origin=publication_detail
    [9]
    李佰平, 智协飞.ECMWF模式地面气温预报的四种误差订正方法的比较研究.气象, 2012, 38(8):897-902. doi:  10.7519/j.issn.1000-0526.2012.08.001
    [10]
    杜钧.集合预报的现状和前景.应用气象学报, 2002, 13(1):16-28. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020102&flag=1
    [11]
    庄照荣. 集合卡尔曼滤波资料同化系统的设计及其在集合预报中的应用. 北京: 中国科学院研究生院, 2007: 91-92.
    [12]
    王鹏飞, 王在志, 黄刚.舍入误差对大气环流模式模拟结果的影响.大气科学, 2007, 31(5):815-825. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200705005.htm
    [13]
    李泽椿, 陈德辉.国家气象中心集合数值预报业务系统的发展及应用.应用气象学报, 2002, 13(1):1-15. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020101&flag=1
    [14]
    陈静, 陈德辉, 颜宏.集合数值预报的发展与研究进展.应用气象学报, 2002, 13(4):497-507. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020465&flag=1
    [15]
    段明铿, 王盘兴.集合预报方法研究及应用进展综述.南京气象学院学报, 2004, 27(2):279-288. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200402019.htm
    [16]
    关吉平, 张立凤, 张铭.集合预报研究现状与展望.气象科学, 2006, 26(2):228-235. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200602016.htm
    [17]
    麻巨慧, 朱跃建, 王盘兴, 等.NCEP、ECMWF及CMC全球集合预报业务系统发展综述.大气科学学报, 2011, 34(3):370-380. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201103018.htm
    [18]
    杜钧, 陈静.单一值预报向概率预报转变的基础:谈谈集合预报及其带来的变革.气象, 2010, 36(11):1-11. doi:  10.7519/j.issn.1000-0526.2010.11.001
    [19]
    毛恒青, 陈谊, 陈德辉.神威中期集合数值预报产品的业务应用.应用气象学报, 2002, 13(1):56-61. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020106&flag=1
    [20]
    赵琳娜, 刘莹, 党皓飞, 等.集合数值预报在洪水预报中的应用进展.应用气象学报, 2014, 25(6):641-653. doi:  10.11898/1001-7313.20140601
    [21]
    Ruth D, Glahn B, Dagostaro V, et al.The performance of MOS in the digital age.Wea Forecasting, 2009, 24:504-519. doi:  10.1175/2008WAF2222158.1
    [22]
    智协飞, 陈雯.THORPEX国际科学研究新进展.大气科学学报, 2010, 33(4):504-511. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201004014.htm
    [23]
    纪永明, 陈静, 矫梅燕, 等.基于多中心TIGGE资料的区域GRAPES集合预报初步试验.气象, 2011, 37(4):392-402. doi:  10.7519/j.issn.1000-0526.2011.04.002
    [24]
    林春泽, 智协飞, 韩艳, 等.基于TIGGE资料的地面气温多模式超级集合预报.应用气象学报, 2009, 20(6):706-712. doi:  10.11898/1001-7313.20090608
  • 加载中
  • -->

Catalog

    Figures(9)

    Article views (2561) PDF downloads(579) Cited by()
    • Received : 2015-05-01
    • Accepted : 2015-10-12
    • Published : 2016-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint