Lin Wen, Lin Changcheng, Li Bailiang, et al. Rainfall intensity and raindrop spectrum for different parts in landing typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. DOI:  10.11898/1001-7313.20160212.
Citation: Lin Wen, Lin Changcheng, Li Bailiang, et al. Rainfall intensity and raindrop spectrum for different parts in landing typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. DOI:  10.11898/1001-7313.20160212.

Rainfall Intensity and Raindrop Spectrum for Different Parts in Landing Typhoon Matmo

DOI: 10.11898/1001-7313.20160212
  • Received Date: 2015-03-19
  • Rev Recd Date: 2015-11-10
  • Publish Date: 2016-03-31
  • During typhoon Matmo passage over Fujian from 23 Jul to 25 Jul in 2014, it passes through two disdrometer sites: Pingnan and Youxi. Pingnan site locates in eastern Fujian that represents the heavy rain region of typhoon Matmo, and Youxi site represents the middle path region of typhoon Matmo moving. Thus, microphysical characteristics of raindrop size distribution in different parts of typhoon Matmo are studied through the PARSIVEL2 disdrometer measurements at these two sites. The evolution of raindrop size distribution parameters reveals different segments of the storm, that the fluctuation of rainfall intensity in the right part is stronger than those in the middle. Heavy rainfalls happen in right front side, rear side of outer rainband and residual cloud. There is showery in the outer rainband in which rainfall intensity fluctuate frequently. Approaching to the central region of typhoon Matmo, the precipitation becomes more continuous and rainfall intensity changes more smoothly. In the right side rainband, the spectral width of raindrop size distribution changes from wide to narrow, the concentration of small rain drops increases at first and then decreases, and concentration of large rain drops decreases gradually. In the middle path of typhoon Matmo, the concentration of small rain drops increases first and then decreases, but spectral width of raindrop size distribution and concentration of large rain drops suddenly rise for difference. The evaluation of raindrop concentration and liquate water has some certain relations to the changed rainfall intensity, but degrees of their changes are not in tune. When rainfall intensity is less than 10 mm·h-1, a large number of small droplets contribute to the precipitation. The contribution to rainfall intensity by large number of small raindrops is higher in the right side rainband than in the middle moving path. In the central region of typhoon Matmo, the contribution by high concentration of small raindrops to the rainfall intensity is higher than in front side and rear side rainband. On the contrary, when rainfall intensity is higher than 10 mm·h-1, the heavy rainfall in front outer rainband and residual cloud are the direct appearances by concentration growing of large droplets. The precipitation at Pingnan is more unstable than that at Youxi, so more fiercely collision broken processes lead to raindrop concentration repeating with droplets growing in right part of typhoon Matmo. Parameters of μ and λ meet the linear function both at 2 sites. Linear fit functions can be used to reduce Gamma distribution function, getting good results. The μ and λ have wide distributions in the region less than 10 mm·h-1. However, when rainfall intensity is more than 10 mm·h-1, parameters of μ and λ decrease with rainfall intensity increasing, and vary with rainfall intensity related to the region and precipitation types.
  • Fig. 1  The moving path and FY-2D satellite infrared data of Typhoon Matmo

    (the circle denotes the center of Matmo)

    Fig. 2  Cloud water path of MODIS

    (a)1030 BT 23 Jul 2014, (b)1330 BT 23 Jul 2014, (c)1030 BT 24 Jul 2014, (d)1330 BT 24 Jul 2014

    Fig. 3  Changes of precipitation parameters during typhoon Matmo in Jul 2014

    (a) raindrop concentration and rainfall intensity at Youxi, (b) volume medium diameter and liquate water content at Youxi, (c) raindrop concentration and rainfall intensity at Pingnan, (d) volume medium diameter and liquate water content at Pingnan

    Fig. 4  Average spectrums of raindrop size during typhoon Matmo

    Fig. 5  Raindrop concentration and volume medium diameter under different rainfall intensity (unit:mm·h-1)

    (a) stage Ⅰ at Youxi, (b) stage Ⅰ at Pingnan, (c) stage Ⅱ at Youxi, (d) stage Ⅱ at Pingnan, (e) stage Ⅲ at Youxi, (f) stage Ⅲ at Pingnan

    Fig. 6  Gamma parameter distribution under different rainfall intensity (unit:mm·h-1)

    (a) Youxi, (b) Pingnan

    Fig. 7  Average spectrum and Gamma fit results

    (a) Youxi, (b) Pingnan

    Table  1  Fit results of Gamma and reduced Gamma distribution

    站点 拟合公式 N0 μ λ r2
    尤溪 N(D)=N0Dμexp (-λD) 4.48×106 5.72 9.81 0.96
    N(D)=N0Dμexp (-λD),λ=-1.255μ+1.237 1.24×105 3.68 0.88
    N(D)=N0Dμexp (-λD),λ=-1.36μ+1.409 8.75×105 4.82 0.94
    屏南 N(D)=N0Dμexp (-λD) 5.78×106 5.40 9.74 0.98
    N(D)=N0Dμexp (-λD),λ=-1.255μ+1.237 6.90×104 2.87 0.89
    N(D)=N0Dμexp (-λD),λ=-1.36μ+1.409 4.32×105 3.96 0.95
    DownLoad: Download CSV
  • [1]
    Petersen W A, Carey L D, Rutledge S A, et al.Mesoscale and radar observations of the fort collins flash flood of 28 July 1997.Bull Ameri Meteor Soc, 1999, 80(2):191-216. doi:  10.1175/1520-0477(1999)080<0191:MAROOT>2.0.CO;2
    [2]
    Vieux B E, Bedient P B.Estimation of rainfall for flood prediction from WSR-88D reflectivity:A case study, 17-18 October 1994.Wea Forecasting, 1998, 13(2):407-415. doi:  10.1175/1520-0434(1998)013<0407:EORFFP>2.0.CO;2
    [3]
    Tokay A, Kruger A, Krajewski W F, et al.Measurements of drop size distribution in the southwestern Amazon basin.J Geophys Res Atmos, 2002, 107(20):1901-1915. doi:  10.1029/2001JD000355/full
    [4]
    Ulbrich C W, Lee L G.Rainfall characteristics associated with the remnants of tropical storm Helene in upstate South Carolina.Wea Forecasting, 2002, 17(6):1257-1267. doi:  10.1175/1520-0434(2002)017<1257:RCAWTR>2.0.CO;2
    [5]
    Tokay A, Bashor P G, Habib E, et al.Raindrop size distribution measurements in tropical cyclones.Mon Wea Rev, 2008, 136(5):1669-1685. doi:  10.1175/2007MWR2122.1
    [6]
    黄文根, 邓北胜, 熊廷南.一次台风暴雨的初步分析.应用气象学报, 1997, 8(2):247-251. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970234&flag=1
    [7]
    田辉, 马开玉, 林振山.华南、华东沿海登陆台风暴雨和大风的分析.应用气象学报, 1999, 10(增刊Ⅰ):149-153. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX9S1.017.htm
    [8]
    钮学新, 董加斌, 杜惠良.华东地区台风降水及影响降水因素的气候分析.应用气象学报, 2005, 16(3):402-407. doi:  10.11898/1001-7313.20050315
    [9]
    朱龙彪, 郑铮, 何彩芬.0414号台风"云娜"多普勒雷达探测.应用气象学报, 2005, 16(4):500-508. doi:  10.11898/1001-7313.20050411
    [10]
    王艳, 郑栋, 张义军.2000—2007年登陆台风中闪电活动与降水特征.应用气象学报, 2011, 22(3):321-328. doi:  10.11898/1001-7313.20110308
    [11]
    程正泉, 陈联寿, 李英.大陆高压对强热带风暴碧利斯内陆强降水影响.应用气象学报, 2013, 24(3):257-267. doi:  10.11898/1001-7313.20130301
    [12]
    宫福久, 李子华, 陈宝君, 等.一次北上台风降水微结构演变特征.气象科学, 1997, 17(4):335-343. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199704003.htm
    [13]
    Chen Baojun, Wang Yuan, Ming Jie.Microphysical characteristics of the raindrop size distribution in typhoon MORAKOT (2009).Journal of Tropical Meteorology, 2012, 18(2):162-171. http://www.cqvip.com/QK/85390X/201202/42308447.html
    [14]
    Marshall J S, Palmer W M.The distribution of rain drops with size.J M Cleor, 1948, 5(4):165-166. doi:  10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
    [15]
    Ulbrich C W, Atlas D.Natural variations in the analytical Form of the raindrop size distribution.J Climate Appl Meteor, 2010, 22(10):1764-1775. https://www.researchgate.net/publication/223190270_Natural_Variations_in_the_Analytical_Form_of_the_Raindrop_Size_Distribution
    [16]
    Zhang G, Vivekanandan J, Brandes E A, et al.The shape-slope relation in observed Gamma raindrop size distributions:Statistical error or useful information.J Atmos Ocean Technol, 2010, 20(8):1106-1119. doi:  10.1175/1520-0426%282003%29020<1106%3ATSRIOG>2.0.CO%3B2
    [17]
    胡子浩, 濮江平, 濮云涛, 等.南海一次海洋性对流云降水雨滴谱特征分析.热带气象学报, 2014, 30(1):181-188. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201401021.htm
    [18]
    Tokay A, Short D A.Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds.J Appl Meteor, 1996, 35(3):355-371. doi:  10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2
    [19]
    Caracciolo C, Prodi F, Battaglia A, et al.Analysis of the moments and parameters of a gamma DSD to infer precipitation properties:A convective stratiform discrimination algorithm.Atmospheric Research, 2006, 80(2-3):165-186. doi:  10.1016/j.atmosres.2005.07.003
    [20]
    Nzeukou A, Sauvageot H, Ochou A D, et al.Raindrop size distribution and radar parameters at Cape Verde.J Applied Meteor, 2004, 43:90-105. doi:  10.1175/1520-0450(2004)043<0090:RSDARP>2.0.CO;2
    [21]
    吴舜华. 利用雨滴谱仪分析不同降水系统之微物理特征性研究. 台湾桃园: 国立中央大学, 2006: 20-24.
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (4637) PDF downloads(529) Cited by()
    • Received : 2015-03-19
    • Accepted : 2015-11-10
    • Published : 2016-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint