Li Chunhui, Liu Yan, Li Xia, et al. Impact of 10-30-day oscillation intensity over the tropical Northwest Pacific Ocean on the South China Sea summer monsoon. J Appl Meteor Sci, 2016, 27(3): 293-302. DOI:  10.11898/1001-7313.20160304.
Citation: Li Chunhui, Liu Yan, Li Xia, et al. Impact of 10-30-day oscillation intensity over the tropical Northwest Pacific Ocean on the South China Sea summer monsoon. J Appl Meteor Sci, 2016, 27(3): 293-302. DOI:  10.11898/1001-7313.20160304.

Impact of 10-30-day Oscillation Intensity over the Tropical Northwest Pacific Ocean on the South China Sea Summer Monsoon

DOI: 10.11898/1001-7313.20160304
  • Received Date: 2015-09-18
  • Rev Recd Date: 2016-02-25
  • Publish Date: 2016-05-31
  • Based on the NCEP reanalysis data and ERSST sea surface temperature (SST) data, using statistical methods, 10-30-day significant sub-seasonal variability periods are extracted from the summer (Jun-Aug) convective in the tropical western Pacific, and these oscillations have different effects on the South China Sea summer monsoon intensity at different scales. At inter-annual time scale, a positive significant correlation is found between the intensity variation of 10-30-day oscillation over the tropical northwest Pacific Ocean regions (TWPI), and the correlation coefficient is 0.635. Influences of TWPI on the South China Sea summer monsoon intensity are mainly regulated by ENSO. Because of the asymmetric response of the lower troposphere Northwest Pacific atmospheric circulation to ENSO, TWPI is much more significant in El Niño developing years than in La Niña years. During strong TWPI years, the SST anomalies are El Niño pattern, which induces anomalously enhanced westerly in the South China Sea, the Philippines and the tropical northwest Pacific Ocean. The westerly anomalies generate strong positive vorticity shear, resulting in abnormal cyclonic circulation, and enhance TWPI and summer monsoon intensity through the wind-evaporation feedback mechanism. On the contrary, in La Niña years, the anticyclonic anomaly circulation result in TWPI weakening and the monsoon strength weakening. Under different inter-decadal backgrounds, TWPI does not show a significant change in the decadal trend, mainly slightly weaker (1958-1976), slightly stronger (1977-1993) and slightly weaker (1994-2011) change. The trend of the summer monsoon intensity inter-decadal changes are more obvious, namely, much stronger, slightly weaker and much weaker. The overall change of vertical shear and water vapor-convection are consistent with TWPI, but are not consistent with the summer monsoon. Vertical shear of wind field and water vapor-convection play important roles on the inter-decadal variation of TWPI, but not for the summer monsoon. The thermal contrast between sea and land is the key factor that leads to the inter-decadal change in the South China Sea summer monsoon.
  • Fig. 1  Power spectrum of daily vorticity time series averaged in the tropical western Pacific (0°-20°N, 135°-175°E) for the averaged from 1958 to 2011

    Fig. 2  Standardized time series of the South China Sea summer monsoon intensity and the TWPI

    (horizonal solid line and dashed line denote two series average in 3 different interdecadal background year)

    Fig. 3  The composite differences between strong and weak years of TWPI (the shaded denotes passing the test of 0.05 level)

    (a) sea surface temperature (unit:K), (b)850 hPa wind (the vector) and 700 hPa specific humidity (the contour, unit: g·kg-1), (c) vertical circulation averaged over 5°-20°N (unit of zonal wind:m·s-1, unit of vertical velocity:10-2 Pa·s-1), (d) the zonal wind averaged over 135°-175°E (unit:m·s-1)

    Fig. 4  Anomalies of temperature specific humidity, moist static energy, equivalent potential temperature, vertical velocity, divergence, relative humidity, and moisture flux convergence averaged over the key activity region (0°-20°N, 135°-175°E)

    Fig. 5  Composite differences of wind vertical shear anomaly in three different interdecadal background years (unit:m·s-1, the shaded denotes passing the test of 0.05 level, rectangles denote the South China Sea and the tropical western Pacific)

    Fig. 6  Anomalies of temperature, specific humidity, moist static energy, equivalent potential temperature, vertical velocity, divergence, relative humidity and moisture flux convergence averaged over the key activity region (0°-20°N, 135°-175°E) in three different interdecadal background years

    Fig. 7  Anomlies of sea surface temperature (the contour, unit:K) and 850 hPa wind (the vector) in three different interdecadal background years (the shaded denotes passing the test of 0.05 level, rectangles denote the South China Sea and the tropical western Pacific)

  • [1]
    梁建茵, 吴尚森.夏季广东降水异常变化与夏季风.热带气象学报, 1999, 15(1):38-47. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX901.004.htm
    [2]
    李春晖, 谷德军, 郑彬, 等.2008年南海夏季风活动概述.热带气象学报, 2009, 25(3):265-272. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200903002.htm
    [3]
    李春晖, 梁建茵, 郑彬, 等.南海夏季风北推时间及相关环流变化特征.应用气象学报, 2007, 18(2):202-210. doi:  10.11898/1001-7313.20070235
    [4]
    梁建茵, 吴尚森.南海西南季风多时间尺度变化及其与海温的相互作用.应用气象学报, 2000, 11(1):95-104. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000115&flag=1
    [5]
    张秀芝, 李江龙, 王东晓.热带海洋温跃层深度与南海夏季风强度关系探讨.海洋学报, 2001, 23(3):26-34. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200103003.htm
    [6]
    李东辉, 朱益民, 谭言科, 等.热带印度洋春季海表温度异常与南海夏季风强度变化的关系.气候与环境研究, 2006, 11(4):514-524. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200604007.htm
    [7]
    谷德军, 纪忠萍, 王东晓, 等.不同时间尺度上南海夏季风强度与海洋热力条件的关系.热带气象学报, 2007, 23(1):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200701002.htm
    [8]
    Nitta T S, Yamada S.Recent warming of tropical sea surface temperature and its relationship to Northern Hemisphere circulation.J Meteor Soc Japan, 1989, 67:375-383. doi:  10.2151/jmsj1965.67.3_375
    [9]
    Liang Jianyin, Wu Shangsen.Diagnostic analysis of interdecadal change of the summer monsoon in the South China Sea.Acta Meteorologica Sinica, 2003, 17(SupplⅠ):81-94. https://www.researchgate.net/publication/294374680_Diagnostic_analysis_of_interdecadal_changes_of_the_summer_monsoon_in_the_South_China_Sea
    [10]
    李霞, 梁建茵, 郑彬.南海夏季风强度年代际变化基本特征.应用气象学报, 2007, 18(3):330-339. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070355&flag=1
    [11]
    戴念军, 谢安, 张勇.南海夏季风活动的年际和年代际特征.气候与环境研究, 2000, 5(4):363-374. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200004003.htm
    [12]
    Liang Jianyin, Yang Song, Li Chunhui, et al.Long-term changes in the South China Sea summer monsoon revealed by station observations of the Xisha Islands.J Geophys Res, 112, D10104, doi: 10.1029/2006JD007922.
    [13]
    Li Chunhui, Li Tim, Liang Jiangyin, et al.Interdecadal variations of meridional winds in the South China Sea and their relationship with summer climate in China.J Climate, 2010, 23:825-841. doi:  10.1175/2009JCLI2762.1
    [14]
    Kwon M, Jhun J G, Wang B, et al.Decadal change in relationship between east Asian and WNP summer monsoons.Geophys Res Lett, 2005, 32, L16709, doi: 10.1029/2005gl023026.
    [15]
    Kwon M, Jhun J G, Ha K J.Decadal change in east Asian summer monsoon circulation in the mid-1990s.Geophys Res Lett, 2007, 34, L21706, doi: 10.1029/2007GL031977.
    [16]
    Yim S Y, Yeh S W, Wu R, et al.The influence of ENSO on decadal variations in the relationship between the East Asian and western North Pacific summer monsoons.J Climate, 2008, 21:3165-3179. doi:  10.1175/2007JCLI1948.1
    [17]
    唐佳, 武炳义.20世纪90年代初东亚夏季风的年代际转型.应用气象学报, 2012, 23(4):402-413. doi:  10.11898/1001-7313.20120403
    [18]
    Wang B, Huang F, Wu Z W, et al.Multi-scale climate variability of the South China Sea monsoon:A review.Dyn Atmos Oceans, 2009, 47:15-37. doi:  10.1016/j.dynatmoce.2008.09.004
    [19]
    陈隆勋, 张博, 张瑛.东亚季风研究的进展.应用气象学报, 2006, 17(6):711-724. doi:  10.11898/1001-7313.20060609
    [20]
    李崇银, 屈昕.伴随南海夏季风爆发的大尺度大气环流演变.大气科学, 2000, 24(1):1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200001000.htm
    [21]
    Li Chongyin, Long Zhenxia, Zhang Qingyun.Strong/Weak summer monsoon activity over the South China Sea and atmospheric intraseasonal oscillation.Adv Atmos Sci, 2001, 18(6):1146-1160. doi:  10.1007/s00376-001-0029-x
    [22]
    陈尚锋, 温之平, 陈文.南海地区大气30—60天低频振荡及其对南海夏季风的可能影响.大气科学, 2011, 35(5):982-992. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201105018.htm
    [23]
    Smith T M, Reynolds R W.Improved extended reconstruction of SST (1854-1997).J Climate, 2004, 17:2466-2477. doi:  10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2
    [24]
    Trenberth K E.Signal versus noise in the Southern Oscillation.Mon Wea Rev, 1984, 112(2):326-332. doi:  10.1175/1520-0493(1984)112<0326:SVNITS>2.0.CO;2
    [25]
    魏凤英.现代气候统计诊断与预测技术 (第2版).北京:气象出版社, 2007.
    [26]
    吴尚森, 梁建茵.南海夏季风强度指数及其变化特征.热带气象学报, 2001, 17(4):337-344. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200104000.htm
    [27]
    Gill A E.Some simple solutions for heat-induced tropical circulation.J Meteor Soc Japan, 1980, 106:447-462. doi:  10.1002/(ISSN)1477-870X
    [28]
    Zhang R H, Li T R, Wen M, et al, Role of intraseasonal oscillation in asymmetric impacts of El Niño and La Niña on the rainfall over southern China in boreal winter.Clim Dyn, 2015, doi: 10.1007/s00382-014-2207-4.
    [29]
    Li T R, Zhang R H, Wen M.Impact of ENSO on the precipitation over China in Winter half-years.J Trop Meteor, 2015, 21:161-170. https://www.researchgate.net/publication/292462228_IMPACT_OF_ENSO_ON_THE_PRECIPITATION_OVER_CHINA_IN_WINTER_HALF-YEARS
    [30]
    Kemball-Cook S, Wang B.Equatorial waves and air-sea interactions in boreal summer intraseasonal oscillations.J Climate, 2001, 14:2923-2942. doi:  10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2
    [31]
    谢安, 叶谦.OLR低频振荡与西太平洋台风的发生.应用气象学报, 1994, 5(2):143-150. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940228&flag=1
    [32]
    Lander M A.An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO.Mon Wea Rev, 1994, 122:636-651. doi:  10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2
    [33]
    Wang B, Chan J C L.How strong ENSO events affect tropical storm activity over the western North Pacific.J Climate, 2002, 15:1643-1658. doi:  10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
    [34]
    Wang B, Xie X.A model for the boreal summer intraseasonal oscillation.J Atmos Sci, 1997, 54:72-86. doi:  10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2
    [35]
    Wang B, Zhang Q.Pacific-East Asian teleconnection Part Ⅱ:How the Philippine Sea anormalous anticyclone is established during El Nino development.J Climate, 2002, 15:3252-3265. doi:  10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2
    [36]
    Jiang X, Li T, Wang B.Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation.J Climate, 2004, 17:1022-1039. doi:  10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (2643) PDF downloads(382) Cited by()
    • Received : 2015-09-18
    • Accepted : 2016-02-25
    • Published : 2016-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint